scholarly journals Developing an enzyme selection tool supporting multiple hosts contexts

2021 ◽  
Author(s):  
María Camarena ◽  
Pablo Carbonell

AbstractEngineering biological organisms that allow the integration of alternative metabolic pathways to natural ones is one of the goals of synthetic biology. Based on this, some of the most attractive applications in terms of synthetic organisms manufacture include the production of a wide range of pharmacologically useful metabolites produced in a sustainable and environmentally friendly way. Also, the biostable molecules green-production involves different types of therapeutic processes, e.g. prostheses and grafts stabilisation. Regarding the viability of genetically modified organisms, metabolic pathways must be first properly designed, taking into consideration the type of host organism that will be involved in metabolic production, as well as its biochemical and environmental conditions. To ensure the correct growth of these synthetic organisms, the enzyme selection must guarantee both the organism survival (and proliferation) and the optimal production of the desired metabolite. Developing enzyme selection tools is essential to enhance and make cost-effective the metabolic pathways design. This technical note presents the update of Selenzyme, the enzyme selection tool which is based on organisms taxonomic compatibility and allows appropriate enzyme selection considering its amino acid sequence. The purpose of the update is to allow multiple host input, in order to perform an affinity comparison between target organisms and each host. The affinity differences will depend on which host to be considered, allowing the user to select the optimal host for the enzyme concerned.

2018 ◽  
Vol 45 (4) ◽  
pp. 358-362 ◽  
Author(s):  
Michael J. Zickar ◽  
Tom H. Ron ◽  
Christopher Arnold

Facebook pages have been promoted as a cost-effective way of communicating with department alumni, students, faculty, and friends. We analyzed Facebook engagement metrics across a 2-year span for the page for one department of psychology. In addition, we surveyed followers of the page to determine whether different constituency groups appreciated different types of Facebook posts. In general, posts related to current faculty accomplishments were most engaging as judged by Facebook metrics and self-report survey data. The survey data also showed that different constituencies enjoyed posts related to their particular group. These results demonstrate that a department Facebook page can be an effective tool for reaching a wide range of constituent groups. We also discuss some tips for generating and managing a department page as well as challenges.


2020 ◽  
pp. 1192-1198
Author(s):  
M.S. Mohammad ◽  
Tibebe Tesfaye ◽  
Kim Ki-Seong

Ultrasonic thickness gauges are easy to operate and reliable, and can be used to measure a wide range of thicknesses and inspect all engineering materials. Supplementing the simple ultrasonic thickness gauges that present results in either a digital readout or as an A-scan with systems that enable correlating the measured values to their positions on the inspected surface to produce a two-dimensional (2D) thickness representation can extend their benefits and provide a cost-effective alternative to expensive advanced C-scan machines. In previous work, the authors introduced a system for the positioning and mapping of the values measured by the ultrasonic thickness gauges and flaw detectors (Tesfaye et al. 2019). The system is an alternative to the systems that use mechanical scanners, encoders, and sophisticated UT machines. It used a camera to record the probe’s movement and a projected laser grid obtained by a laser pattern generator to locate the probe on the inspected surface. In this paper, a novel system is proposed to be applied to flat surfaces, in addition to overcoming the other limitations posed due to the use of the laser projection. The proposed system uses two video cameras, one to monitor the probe’s movement on the inspected surface and the other to capture the corresponding digital readout of the thickness gauge. The acquired images of the probe’s position and thickness gauge readout are processed to plot the measured data in a 2D color-coded map. The system is meant to be simpler and more effective than the previous development.


2020 ◽  
Vol 21 (2) ◽  
pp. 97-109 ◽  
Author(s):  
Ana P. dos Santos ◽  
Tamara G. de Araújo ◽  
Gandhi Rádis-Baptista

Venom-derived peptides display diverse biological and pharmacological activities, making them useful in drug discovery platforms and for a wide range of applications in medicine and pharmaceutical biotechnology. Due to their target specificities, venom peptides have the potential to be developed into biopharmaceuticals to treat various health conditions such as diabetes mellitus, hypertension, and chronic pain. Despite the high potential for drug development, several limitations preclude the direct use of peptides as therapeutics and hamper the process of converting venom peptides into pharmaceuticals. These limitations include, for instance, chemical instability, poor oral absorption, short halflife, and off-target cytotoxicity. One strategy to overcome these disadvantages relies on the formulation of bioactive peptides with nanocarriers. A range of biocompatible materials are now available that can serve as nanocarriers and can improve the bioavailability of therapeutic and venom-derived peptides for clinical and diagnostic application. Examples of isolated venom peptides and crude animal venoms that have been encapsulated and formulated with different types of nanomaterials with promising results are increasingly reported. Based on the current data, a wealth of information can be collected regarding the utilization of nanocarriers to encapsulate venom peptides and render them bioavailable for pharmaceutical use. Overall, nanomaterials arise as essential components in the preparation of biopharmaceuticals that are based on biological and pharmacological active venom-derived peptides.


2019 ◽  
Vol 16 (7) ◽  
pp. 587-595 ◽  
Author(s):  
Roberto Santangelo ◽  
Alessandro Dell'Edera ◽  
Arianna Sala ◽  
Giordano Cecchetti ◽  
Federico Masserini ◽  
...  

Background: The incoming disease-modifying therapies against Alzheimer’s disease (AD) require reliable diagnostic markers to correctly enroll patients all over the world. CSF AD biomarkers, namely amyloid-β 42 (Aβ42), total tau (t-tau), and tau phosphorylated at threonine 181 (p-tau181), showed good diagnostic accuracy in detecting AD pathology, but their real usefulness in daily clinical practice is still a matter of debate. Therefore, further validation in complex clinical settings, that is patients with different types of dementia, is needed to uphold their future worldwide adoption. Methods: We measured CSF AD biomarkers’ concentrations in a sample of 526 patients with a clinical diagnosis of dementia (277 with AD and 249 with Other Type of Dementia, OTD). Brain FDG-PET was also considered in a subsample of 54 patients with a mismatch between the clinical diagnosis and the CSF findings. Results: A p-tau181/Aβ42 ratio higher than 0.13 showed the best diagnostic performance in differentiating AD from OTD (86% accuracy index, 74% sensitivity, 81% specificity). In cases with a mismatch between clinical diagnosis and CSF findings, brain FDG-PET partially agreed with the p-tau181/Aβ42 ratio, thus determining an increase in CSF accuracy. Conclusions: The p-tau181/Aβ42 ratio alone might reliably detect AD pathology in heterogeneous samples of patients suffering from different types of dementia. It might constitute a simple, cost-effective and reproducible in vivo proxy of AD suitable to be adopted worldwide not only in daily clinical practice but also in future experimental trials, to avoid the enrolment of misdiagnosed AD patients.


2020 ◽  
Vol 12 ◽  
Author(s):  
Nihar Ranjan Biswal

Background: Surfactant adsorption at the interfaces (solid–liquid, liquid–air, or liquid–liquid) is receiving considerable attention from a long time due to its wide range of practical applications. Objective: Specifically wettability of solid surface by liquids is mainly measured by contact angle and has many practical importances where solid–liquid systems are used. Adsorption of surfactants plays an important role in the wetting process. The wetting behaviours of three plant-based natural surfactants (Reetha, Shikakai, and Acacia) on the glass surface are compared with one widely used nonionic synthetic surfactant (Triton X-100) and reported in this study. Methods: The dynamic contact angle study of three different types of plant surfactants (Reetha, Shikakai and Acacia) and one synthetic surfactant (Triton X 100) on the glass surface has been carried out. The effect of two different types of alcohols such as Methanol and amyl alcohol on wettability of shikakai, as it shows little higher value of contact angle on glass surface has been measured. Results: The contact angle measurements show that there is an increase in contact angle from 47° (pure water) to 67.72°, 65.57°, 68.84°, and 68.79° for Reetha, Acacia, Shikakai, and Triton X-100 respectively with the increase in surfactant concentration and remain constant at CMC. The change in contact angle of Shikakai-Amyl alcohol mixtures are slightly different than that of methanol-Shikakai mixture, mostly there is a gradual increase in contact angle with the increasing in alcohol concentration. Conclusion: There is no linear relationship between cos θ and inverse of surface tension. There was a linear increase in surface free energy results with increase in concentration as more surfactant molecules were adsorbing at the interface enhancing an increase in contact angle.


Author(s):  
_______ Archana ◽  
Charu Datta ◽  
Pratibha Tiwari

Degradation of environment is one of the most serious challenges before the mankind in today’s world. Mankind has been facing a wide range of problem arising out of the degradation of environment. Not only the areas under human inhabitation, but the areas of the planet without human population have also been suffering from these problems. As the population increase day by day, the amenities are not improved simultaneously. With the advancement of science and technologies the needs of human beings has been changing rapidly. As a result different types of environmental problems have been rising. Environmental degradation is a wide- reaching problem and it is likely to influence the health of human population is great. It may be defined the deterioration of the environment through depletion of resources such as air, water, and soil. The destruction of ecosystem and extinction of wildlife. Environmental degradation has occurred due to the recent activities in the field of socio-economic, institute and technology. Poverty still remains a problem as the root of several environmental problems to create awareness among the people about the ill effect of environmental pollution. In the whole research it is clear that all factors of environmental degradation may be reduced through- Framing the new laws on environmental degradation, Environment friend policy, Controlling all the ways and means of noise, air, soil and water pollution, Through growing more and more trees and by adapting the proper sanitation policy.  


Author(s):  
Allan Matthews ◽  
Adrian Leyland

Over the past twenty years or so, there have been major steps forward both in the understanding of tribological mechanisms and in the development of new coating and treatment techniques to better “engineer” surfaces to achieve reductions in wear and friction. Particularly in the coatings tribology field, improved techniques and theories which enable us to study and understand the mechanisms occurring at the “nano”, “micro” and “macro” scale have allowed considerable progress to be made in (for example) understanding contact mechanisms and the influence of “third bodies” [1–5]. Over the same period, we have seen the emergence of the discipline which we now call “Surface Engineering”, by which, ideally, a bulk material (the ‘substrate’) and a coating are combined in a way that provides a cost-effective performance enhancement of which neither would be capable without the presence of the other. It is probably fair to say that the emergence and recognition of Surface Engineering as a field in its own right has been driven largely by the availability of “plasma”-based coating and treatment processes, which can provide surface properties which were previously unachievable. In particular, plasma-assisted (PA) physical vapour deposition (PVD) techniques, allowing wear-resistant ceramic thin films such as titanium nitride (TiN) to be deposited on a wide range of industrial tooling, gave a step-change in industrial productivity and manufactured product quality, and caught the attention of engineers due to the remarkable cost savings and performance improvements obtained. Subsequently, so-called 2nd- and 3rd-generation ceramic coatings (with multilayered or nanocomposite structures) have recently been developed [6–9], to further extend tool performance — the objective typically being to increase coating hardness further, or extend hardness capabilities to higher temperatures.


Biostatistics ◽  
2019 ◽  
Author(s):  
Dane R Van Domelen ◽  
Emily M Mitchell ◽  
Neil J Perkins ◽  
Enrique F Schisterman ◽  
Amita K Manatunga ◽  
...  

SUMMARYMeasuring a biomarker in pooled samples from multiple cases or controls can lead to cost-effective estimation of a covariate-adjusted odds ratio, particularly for expensive assays. But pooled measurements may be affected by assay-related measurement error (ME) and/or pooling-related processing error (PE), which can induce bias if ignored. Building on recently developed methods for a normal biomarker subject to additive errors, we present two related estimators for a right-skewed biomarker subject to multiplicative errors: one based on logistic regression and the other based on a Gamma discriminant function model. Applied to a reproductive health dataset with a right-skewed cytokine measured in pools of size 1 and 2, both methods suggest no association with spontaneous abortion. The fitted models indicate little ME but fairly severe PE, the latter of which is much too large to ignore. Simulations mimicking these data with a non-unity odds ratio confirm validity of the estimators and illustrate how PE can detract from pooling-related gains in statistical efficiency. These methods address a key issue associated with the homogeneous pools study design and should facilitate valid odds ratio estimation at a lower cost in a wide range of scenarios.


2021 ◽  
Vol 11 (7) ◽  
pp. 3209
Author(s):  
Karla R. Borba ◽  
Didem P. Aykas ◽  
Maria I. Milani ◽  
Luiz A. Colnago ◽  
Marcos D. Ferreira ◽  
...  

Portable spectrometers are promising tools that can be an alternative way, for various purposes, of analyzing food quality, such as monitoring in a few seconds the internal quality during fruit ripening in the field. A portable/handheld (palm-sized) near-infrared (NIR) spectrometer (Neospectra, Si-ware) with spectral range of 1295–2611 nm, equipped with a micro-electro-mechanical system (MEMs), was used to develop prediction models to evaluate tomato quality attributes non-destructively. Soluble solid content (SSC), fructose, glucose, titratable acidity (TA), ascorbic, and citric acid contents of different types of fresh tomatoes were analyzed with standard methods, and those values were correlated to spectral data by partial least squares regression (PLSR). Fresh tomato samples were obtained in 2018 and 2019 crops in commercial production, and four fruit types were evaluated: Roma, round, grape, and cherry tomatoes. The large variation in tomato types and having the fruits from distinct years resulted in a wide range in quality parameters enabling robust PLSR models. Results showed accurate prediction and good correlation (Rpred) for SSC = 0.87, glucose = 0.83, fructose = 0.87, ascorbic acid = 0.81, and citric acid = 0.86. Our results support the assertion that a handheld NIR spectrometer has a high potential to simultaneously determine several quality attributes of different types of tomatoes in a practical and fast way.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Chih-Yu Chung ◽  
Yu-Ju Chen ◽  
Chia-Hui Kang ◽  
Hung-Yun Lin ◽  
Chih-Ching Huang ◽  
...  

Carbon quantum dots (CQDs) are emerging novel nanomaterials with a wide range of applications and high biocompatibility. However, there is a lack of in-depth research on whether CQDs can cause acute or long-term adverse reactions in aquatic organisms. In this study, two different types of CQDs prepared by ammonia citrate and spermidine, namely CQDAC and CQDSpd, were used to evaluate their biocompatibilities. In the fish embryo acute toxicity test (FET), the LD50 of CQDAC and CQDSpd was about 500 and 100 ppm. During the stage of eleutheroembryo, the LD50 decreased to 340 and 55 ppm, respectively. However, both CQDs were quickly eliminated from embryo and eleutheroembryo, indicating a lack of bioaccumulation. Long-term accumulation of CQDs was also performed in this study, and adult zebrafish showed no adverse effects in 12 weeks. In addition, there was no difference in the hatchability and deformity rates of offspring produced by adult zebrafish, regardless of whether they were fed CQDs or not. The results showed that both CQDAC and CQDSpd have low toxicity and bioaccumulation to zebrafish. Moreover, the toxicity assay developed in this study provides a comprehensive platform to assess the impacts of CQDs on aquatic organisms in the future.


Sign in / Sign up

Export Citation Format

Share Document