scholarly journals The rt-TEP tool: real-time visualization of TMS-evoked potentials to maximize cortical activation and minimize artifacts

2021 ◽  
Author(s):  
Silvia Casarotto ◽  
Matteo Fecchio ◽  
Mario Rosanova ◽  
Giuseppe Varone ◽  
Sasha D'Ambrosio ◽  
...  

Background The impact of transcranial magnetic stimulation (TMS) on cortical neurons is currently hard to predict based on a priori biophysical and anatomical knowledge alone. This problem can hamper the reliability and reproducibility of protocols aimed at measuring electroencephalographic (EEG) responses to TMS. New Method We introduce and release a novel software tool to facilitate and standardize the acquisition of TMS-evoked potentials (TEPs). The tool, rt-TEP (real-time TEP), interfaces with different EEG amplifiers and offers a series of informative visualization modes to assess in real time the immediate impact of TMS on the underlying neuronal circuits. Results We show that rt-TEP can be used to abolish or minimize magnetic and muscle artifacts contaminating the post-stimulus period thus affording a clear visualization and quantification of the amplitude of the early (<50 ms) EEG response after averaging a limited number of trials. This real-time readout can then be used to adjust TMS parameters (e.g. site, orientation, intensity) and experimental settings (e.g. loudness and/or spectral features of the noise masking) to ultimately maximize direct cortical effects over the undesired sensory effects of the coil's discharge. Comparison with Existing Methods The ensemble of real-time visualization modes of rt-TEP are not implemented in any current commercial software and provide a key readout to titrate TMS parameters beyond the a priori information provided by anatomical models. Conclusions Real-time optimization of stimulation parameters with rt-TEP can facilitate the acquisition of reliable TEPs with a high signal-to-noise ratio and improve the standardization and reproducibility of data collection across laboratories.

2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


2019 ◽  
Vol 12 (12) ◽  
pp. 6273-6301
Author(s):  
Edward Malina ◽  
Haili Hu ◽  
Jochen Landgraf ◽  
Ben Veihelmann

Abstract. Retrievals of methane isotopologues have the potential to differentiate between natural and anthropogenic methane sources types, which can provide much needed information about the current global methane budget. We investigate the feasibility of retrieving the second most abundant isotopologue of atmospheric methane (13CH4, roughly 1.1 % of total atmospheric methane) from the shortwave infrared (SWIR) channels of the future Sentinel-5/ultra-violet, visible, near-infrared, shortwave infrared (UVNS) and current Copernicus Sentinel-5 Precursor TROPOspheric Monitoring Instrument (TROPOMI) instruments. With the intended goal of calculating the δ13C value, we assume that a δ13C uncertainty of better than 1 ‰ is sufficient to differentiate between source types, which corresponds to a 13CH4 uncertainty of <0.02 ppb. Using the well-established information content analysis techniques and assuming clear-sky, non-scattering conditions, we find that the SWIR3 (2305–2385 nm) channel on the TROPOMI instrument can achieve a mean uncertainty of <1 ppb, while the SWIR1 channel (1590–1675 nm) on the Sentinel-5 UVNS instrument can achieve <0.68 ppb or <0.2 ppb in high signal-to-noise ratio (SNR) cases. These uncertainties combined with significant spatial and/or temporal averaging techniques can reduce δ13C uncertainty to the target magnitude or better. However, we find that 13CH4 retrievals are highly sensitive to errors in a priori knowledge of temperature and pressure, and accurate knowledge of these profiles is required before 13CH4 retrievals can be performed on TROPOMI and future Sentinel-5/UVNS data. In addition, we assess the assumption that scattering-induced light path errors are cancelled out by comparing the δ13C values calculated for non-scattering and scattering scenarios. We find that there is a minor bias in δ13C values from scattering and non-scattering retrievals, but this is unrelated to scattering-induced errors.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Ba Cao Nguyen ◽  
Xuan Nam Tran

In this paper, we analyze the performance of a full-duplex (FD) amplify-and-forward (AF) relay system with imperfect hardware. Besides the aggregate hardware impairments of the imperfect transceiver, we also consider the impact of residual self-interference (RSI) due to imperfect cancellation at the FD relay node. An analytical framework for analyzing the system performance including exact outage probability (OP), asymptotic OP, and approximate symbol error probability (SEP) is developed. In order to tackle these impacts, we propose an optimal power allocation scheme which can improve the outage performance of the FD relay node, especially at the high signal-to-noise ratio (SNR) regime. Numerical results are presented for various evaluation scenarios and verified using the Monte Carlo simulations.


2021 ◽  
pp. 019459982110492
Author(s):  
Allan M. Henslee ◽  
Christopher R. Kaufmann ◽  
Matt D. Andrick ◽  
Parker T. Reineke ◽  
Viral D. Tejani ◽  
...  

Objective Electrocochleography (ECochG) is increasingly being used during cochlear implant (CI) surgery to detect and mitigate insertion-related intracochlear trauma, where a drop in ECochG signal has been shown to correlate with a decline in hearing outcomes. In this study, an ECochG-guided robotics-assisted CI insertion system was developed and characterized that provides controlled and consistent electrode array insertions while monitoring and adapting to real-time ECochG signals. Study Design Experimental research. Setting A research laboratory and animal testing facility. Methods A proof-of-concept benchtop study evaluated the ability of the system to detect simulated ECochG signal changes and robotically adapt the insertion. Additionally, the ECochG-guided insertion system was evaluated in a pilot in vivo sheep study to characterize the signal-to-noise ratio and amplitude of ECochG recordings during robotics-assisted insertions. The system comprises an electrode array insertion drive unit, an extracochlear recording electrode module, and a control console that interfaces with both components and the surgeon. Results The system exhibited a microvolt signal resolution and a response time <100 milliseconds after signal change detection, indicating that the system can detect changes and respond faster than a human. Additionally, animal results demonstrated that the system was capable of recording ECochG signals with a high signal-to-noise ratio and sufficient amplitude. Conclusion An ECochG-guided robotics-assisted CI insertion system can detect real-time drops in ECochG signals during electrode array insertions and immediately alter the insertion motion. The system may provide a surgeon the means to monitor and reduce CI insertion–related trauma beyond manual insertion techniques for improved CI hearing outcomes.


2011 ◽  
Vol 403-408 ◽  
pp. 2337-2340
Author(s):  
Shu Cong Liu ◽  
Yan Xing Song ◽  
Jing Song Yang

Seismic illumination analysis was an effective means of recognizing and studying the energy distributions in the underground geological structure in seismic data acquisition. Effective seismic illumination analysis to a priori targeted-geological model to identify the energy distribution of seismic waves, can apply to seismic analysis and amplitude compensation analysis. To increase the signal to noise ratio and resolution of seismic data when vibrator seismic exploration, it was necessary to strengthen the energy of a certain direction to get the High-Precision imaging and the best illumination of the target areas.Simulation research were done on single source directional illumination seismic technology, with seismic illumination analysis, and the impact of source number, spacing change on directional illumination seismic technology were also analyzed. Simulation results showed that the directional seismic technology could improved SNR of seismic data, and could be used for seismic signal processing.


2019 ◽  
Vol 7 (5) ◽  
pp. 730-733 ◽  
Author(s):  
Baoli Dong ◽  
Wenhui Song ◽  
Xiuqi Kong ◽  
Nan Zhang ◽  
Weiying Lin

Developing a reliable method to detect Na2S2O4 in real time is of great importance for the in-depth study of its toxicity to humans and to allow it to be safely handled.


Author(s):  
Eunhye Kim ◽  
Hani S. Mahmassani ◽  
Haleh Ale-Ahmad ◽  
Marija Ostojic

Origin–destination (O–D) demand is a critical component in both online and offline dynamic traffic assignment (DTA) systems. Recent advances in real-time DTA applications in large networks call for robust and efficient methodologies for online O–D demand estimation and prediction. This study presents a day-to-day learning framework for a priori O–D demand, along with a predictive data-driven O–D correction approach for online consistency between predicted and observed (sensor) values. When deviations between simulation and real world are observed, a consistency-checking module initiates O–D demand correction for the given prediction horizon. Two predictive correction methods are suggested: 1) simple gradient method, and 2) Taylor approximation method. New O–D demand matrices, corrected for 24 simulation hours by the correction module, are used as the updated a priori demand for the next day simulation. The methodology is tested in a real-world network, Kansas City, MO, for a 3-day period. Actual tests in real-world networks of online DTA systems have been very limited in the literature and in actual practice. The test results are analyzed in time and space dimensions. The overall performance of observed links is assessed. To measure the impact of O–D correction and daily O–D updates, traffic prediction performance with the new modules is compared with the base case. Predictive O–D correction improves prediction performance in a long prediction window. Also, daily updated O–D demand provides better initial states for traffic prediction, enhancing prediction in short prediction windows. The two modules collectively improve traffic prediction performance of the real-time DTA system.


2020 ◽  
Vol 492 (4) ◽  
pp. 5470-5507
Author(s):  
E Marfil ◽  
H M Tabernero ◽  
D Montes ◽  
J A Caballero ◽  
M G Soto ◽  
...  

ABSTRACT With the purpose of assessing classic spectroscopic methods on high-resolution and high signal-to-noise ratio spectra in the near-infrared wavelength region, we selected a sample of 65 F-, G-, and K-type stars observed with CARMENES, the new, ultra-stable, double-channel spectrograph at the 3.5 m Calar Alto telescope. We computed their stellar atmospheric parameters (Teff, log g, ξ, and [Fe/H]) by means of the stepar code, a python implementation of the equivalent width method that employs the 2017 version of the moog code and a grid of MARCS model atmospheres. We compiled four Fe i and Fe ii line lists suited to metal-rich dwarfs, metal-poor dwarfs, metal-rich giants, and metal-poor giants that cover the wavelength range from 5300 to 17 100 Å, thus substantially increasing the number of identified Fe i and Fe ii lines up to 653 and 23, respectively. We examined the impact of the near-infrared Fe i and Fe ii lines upon our parameter determinations after an exhaustive literature search, placing special emphasis on the 14 Gaia benchmark stars contained in our sample. Even though our parameter determinations remain in good agreement with the literature values, the increase in the number of Fe i and Fe ii lines when the near-infrared region is taken into account reveals a deeper Teff scale that might stem from a higher sensitivity of the near-infrared lines to Teff.


2020 ◽  
Vol 495 (1) ◽  
pp. 383-401
Author(s):  
Arumalla B S Reddy

ABSTRACT High spectral resolution and high signal-to-noise ratio optical spectra of red giants in the globular cluster Omega Centauri are analysed for stellar parameters and chemical abundances of 15 elements including helium by either line equivalent widths or synthetic spectrum analyses. The simultaneous abundance analysis of MgH and Mg lines adopting theoretical photospheres and a combination of He/H ratios proved to be the only powerful probe to evaluate helium abundances of red giants cooler than 4400 K, wherein otherwise helium line transitions (He i 10830 and 5876 Å) present for a direct spectral line analysis. The impact of helium-enhanced model photospheres on the resulting abundance ratios is smaller than 0.15 dex, in agreement with past studies. The first indirect spectroscopic helium abundances measured in this paper for the most metal-rich cluster members reveal the discovery of seven He-enhanced giants ($\Delta Y=+0.15 \pm 0.04$), the largest such sample found spectroscopically to date. The average metallicity of −0.79 ± 0.06 dex and abundances for O, Na, Al, Si, Ca, Ti, Ni, Ba, and La are consistent with values found for the red giant branch (RGB-a) and subgiant branch (SGB-a) populations of Omega Centauri, suggesting an evolutionary connection among samples. The He enhancement in giants is associated with larger s-process elemental abundances, which correlate with Al and anticorrelate with O. These results support the formation of He-enhanced, metal-rich population of Omega Centauri out of the interstellar medium enriched with the ejecta of fast rotating massive stars, binaries exploding as supernovae, and asymptotic giant branch (AGB) stars.


2014 ◽  
Vol 10 (S305) ◽  
pp. 181-185
Author(s):  
S. Bagnulo ◽  
L. Fossati ◽  
J. D. Landstreet ◽  
O. Kochukhov

AbstractStellar spectropolarimetry has become an extremely popular technique during the last decade or two, and has led to major advances in the studies of stellar magnetic fields. Many important discoveries have been made thanks to ultra-precise measurements of very small polarimetric signals, which require very stable instruments and special observing strategies. The so called beam-swapping technique is a well-known polarimetric technique capable of suppressing many spurious signals due to various instrumental effects. However, when one is interested in ultra-high signal-to-noise ratio measurements, observers start to hit various limitations introduced by the instrument, by the atmosphere, and even by the software for data-reduction. These limitations cannot be overcome by the observing strategies, and sources of errors other than photon-noise must be taken into account. Here we discuss the advantages of the beam-swapping technique, and the impact of small instrument and atmospheric instabilities, and how these issues offer an explanation for the origin of the apparently significant observed polarisation signals produced by effects other than those intrinsic to the observed target.


Sign in / Sign up

Export Citation Format

Share Document