scholarly journals LORE homomerization is required for 3-OH-C10:0 induced immune signaling

2021 ◽  
Author(s):  
Sabine Eschrig ◽  
Milena Schaeffer ◽  
Tina Illig ◽  
Sonja Eibel ◽  
Lin-Jie Shu ◽  
...  

Perception and processing of various internal and external signals is essential for all living organisms. Plants have an expanded and diversified repertoire of cell surface-localized receptor-like kinases (RLKs) that transduce signals across the plasma membrane. RLKs often assemble into higher-order receptor complexes with co-receptors, regulators and scaffolds to convert extracellular stimuli into cellular responses. To date, the only S-domain-RLK from Arabidopsis thaliana with a known ligand and function is AtLORE, a pattern recognition receptor that senses bacterial 3-hydroxy fatty acids of medium chain length, such as 3-hydroxy decanoic acid (3-OH-C10:0), to activate pattern-triggered immunity. Here we show that AtLORE forms receptor homomers, which is essential for 3-OH-C10:0-induced immune signaling. AtLORE homomerization is mediated by the transmembrane and extracellular domain. We show natural variation in the perception of 3-OH-C10:0 within the Brassicaceae family. Arabidopsis lyrata and Arabidopsis halleri do not respond to 3-OH-C10:0, although they possess a putative LORE orthologue. We found that LORE orthologues of these 3-OH-C10:0 nonresponsive species have defective extracellular domains that can bind the 3-OH-C10:0 ligand but lack the ability to homomerize. Our findings shed light on the activation mechanisms of AtLORE and explain natural variation of 3-OH-C10:0 perception within the Brassicaceae family.

2021 ◽  
Vol 22 (5) ◽  
pp. 2536
Author(s):  
Rong-Jane Chen ◽  
Chiao-Ching Huang ◽  
Rosita Pranata ◽  
Yu-Hsuan Lee ◽  
Yu-Ying Chen ◽  
...  

Silver nanoparticles pose a potential risk to ecosystems and living organisms due to their widespread use in various fields and subsequent gradual release into the environment. Only a few studies have investigated the effects of silver nanoparticles (AgNPs) toxicity on immunological functions. Furthermore, these toxic effects have not been fully explored. Recent studies have indicated that zebrafish are considered a good alternative model for testing toxicity and for evaluating immunological toxicity. Therefore, the purpose of this study was to investigate the toxicity effects of AgNPs on innate immunity using a zebrafish model and to investigate whether the natural compound pterostilbene (PTE) could provide protection against AgNPs-induced immunotoxicity. Wild type and neutrophil- and macrophage-transgenic zebrafish lines were used in the experiments. The results indicated that the exposure to AgNPs induced toxic effects including death, malformation and the innate immune toxicity of zebrafish. In addition, AgNPs affect the number and function of neutrophils and macrophages. The expression of immune-related cytokines and chemokines was also affected. Notably, the addition of PTE could activate immune cells and promote their accumulation in injured areas in zebrafish, thereby reducing the damage caused by AgNPs. In conclusion, AgNPs may induce innate immune toxicity and PTE could ameliorate this toxicity.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3951
Author(s):  
Sarva Keihani ◽  
Verena Kluever ◽  
Eugenio F. Fornasiero

The extraordinary cellular diversity and the complex connections established within different cells types render the nervous system of vertebrates one of the most sophisticated tissues found in living organisms. Such complexity is ensured by numerous regulatory mechanisms that provide tight spatiotemporal control, robustness and reliability. While the unusual abundance of long noncoding RNAs (lncRNAs) in nervous tissues was traditionally puzzling, it is becoming clear that these molecules have genuine regulatory functions in the brain and they are essential for neuronal physiology. The canonical view of RNA as predominantly a ‘coding molecule’ has been largely surpassed, together with the conception that lncRNAs only represent ‘waste material’ produced by cells as a side effect of pervasive transcription. Here we review a growing body of evidence showing that lncRNAs play key roles in several regulatory mechanisms of neurons and other brain cells. In particular, neuronal lncRNAs are crucial for orchestrating neurogenesis, for tuning neuronal differentiation and for the exact calibration of neuronal excitability. Moreover, their diversity and the association to neurodegenerative diseases render them particularly interesting as putative biomarkers for brain disease. Overall, we foresee that in the future a more systematic scrutiny of lncRNA functions will be instrumental for an exhaustive understanding of neuronal pathophysiology.


2021 ◽  
Vol 14 ◽  
pp. 194008292110281
Author(s):  
Faith Thomas Mpondo ◽  
Patrick A. Ndakidemi ◽  
Anna C. Treydte

Insect pollinators provide numerous ecosystem services that support other living organisms. While pollinators play a large role in cropping systems, little is known about their presence and function in rangeland ecosystems, which have recently become fragmented and overexploited at an extraordinary rate. We assessed local Maasai knowledge on insect pollinators and how pollinators affect livelihood diversification in Simanjiro rangelands, Tanzania. Through questionnaires, key informant interviews, focus group discussions, and field observations, we found varied insect knowledge among Maasai herders. Lasioglossum of sub genus Ipomalictus and Syriphidae were the least commonly recognized pollinators as only 24%, and 7% of participants could identify them, respectively. Responses varied significantly between men and women (F = 7.397, p = .007). Commiphora africana, Acacia mellifera and Albizia anthelmintica were noted as most important bee forage plants while observations showed Aspilia mossambicensis, Justicia debile and Acacia tortilis. Most (77%) of Maasai herders showed limited ability to link pollinators and rangeland wellbeing. Beekeeping contributed to livelihood diversification for 61% of respondents, with women participating more frequently than men (χ2 = 46.962, p = .0001). Beekeeping was positively influenced by education level ( R = .421, p < .0001) and occupation ( R = .194, p = .009). Pollinator declines were attributed to climate change (47%), agriculture (37%), and habitat destruction (8%). We conclude that Maasai have limited knowledge of common pollinator groups and their roles. Community outreach and training should bridge the knowledge gap in pastoralist communities to fully realize pollinator benefits and highlight the importance of rangeland health.


1994 ◽  
Vol 14 (3) ◽  
pp. 1956-1963
Author(s):  
J L Johnson ◽  
T G Beito ◽  
C J Krco ◽  
D O Toft

Immunoprecipitation of unactivated avian progesterone receptor results in the copurification of hsp90, hsp70, and three additional proteins, p54, p50, and p23. p23 is also present in immunoaffinity-purified hsp90 complexes along with hsp70 and another protein, p60. Antibody and cDNA probes for p23 were prepared in an effort to elucidate the significance and function of this protein. Antibodies to p23 detect similar levels of p23 in all tissues tested and cross-react with a protein of the same size in mice, rabbits, guinea pigs, humans, and Saccharomyces cerevisiae, indicating that p23 is a conserved protein of broad tissue distribution. These antibodies were used to screen a chicken brain cDNA library, resulting in the isolation of a 468-bp partial cDNA clone encoding a sequence containing four sequences corresponding to peptide fragments isolated from chicken p23. This partial clone was subsequently used to isolate a full-length human cDNA clone. The human cDNA encodes a protein of 160 amino acids that does not show homology to previously identified proteins. The chicken and human cDNAs are 88% identical at the DNA level and 96.3% identical at the protein level. p23 is a highly acidic phosphoprotein with an aspartic acid-rich carboxy-terminal domain. Bacterially overexpressed human p23 was used to raise several monoclonal antibodies to p23. These antibodies specifically immunoprecipitate p23 in complex with hsp90 in all tissues tested and can be used to immunoaffinity isolate progesterone receptor complexes from chicken oviduct cytosol.


2013 ◽  
pp. 1-32 ◽  
Author(s):  
Leszek Konieczny ◽  
Irena Roterman-Konieczna ◽  
Paweł Spólnik

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 264 ◽  
Author(s):  
José R. Dinneny

Physiology, which is often viewed as a field of study distinct from development, is technically defined as the branch of biology that explores the normal function of living organisms and their parts. Because plants normally develop continuously throughout their life, plant physiology actually encompasses all developmental processes. Viewing plant biology from a physiologist’s perspective is an attempt to understand the interconnectedness of development, form, and function in the context of multidimensional complexity in the environment. To meet the needs of an expanding human population and a degrading environment, we must understand the adaptive mechanisms that plants use to acclimate to environmental change, and this will require a more holistic approach than is used by current molecular studies. Grand challenges for studies on plant physiology require a more sophisticated understanding of the environment that plants grow in, which is likely to be at least as complex as the plant itself. Moving the lab to the field and using the field for inspiration in the lab need to be expressly promoted by the community as we work to apply the basic concepts learned through reductionist approaches toward a more integrated and realistic understanding of the plant.


1987 ◽  
Vol 119 (S140) ◽  
pp. 15-30 ◽  
Author(s):  
Henry R. Murkin ◽  
Bruce D.J. Batt

AbstractThis paper reviews the interactions of vertebrates and invertebrates in peatlands and marshes to assess current knowledge and future research needs. Living organisms may interact through a number of direct trophic and nutrient pathways and a variety of non-trophic, habitat-dependent relationships. Freshwater marshes and peatlands are dynamic aquatic environments and organisms that occupy these areas must be adapted to a wide range of environmental conditions. The avian community illustrates the main interactions of invertebrates and vertebrates in peatlands and marshes. Waterfowl, along with fish and furbearers, are the most economically important vertebrates using these habitats. Each of these groups has important trophic and habitat links to the invertebrates within wetlands.The most common interaction between vertebrates and invertebrates is the use of invertebrates as food by vertebrates. Few studies, however, have dealt with trophic dynamics or secondary production within wetlands. Waterfowl, fish, and many other wetland vertebrates, during all or part of their life cycles, regularly feed on invertebrates. Some invertebrates are vectors of disease and parasites to vertebrates. Vertebrates can directly affect the structural substrate that invertebrates depend on as habitat through consumption of macrophytes or through the use of living and dead plant material in the construction of houses and nests. Conversely, herbivorous invertebrates may directly affect the survival and distribution of macrophytes in wetlands. Macrophyte distribution, in turn, is an important factor in determining vertebrate use of wetlands. The general lack of both taxonomic and ecological information on invertebrates in wetlands is the main hindrance to future elucidation of vertebrate–invertebrate interactions in these environments. Development of invertebrate sampling techniques suitable for wetland habitats also is necessary. More specific research needs must be met to develop a better understanding of the structure and function of these dynamic systems.


2014 ◽  
Vol 995 ◽  
pp. 1-27 ◽  
Author(s):  
Mahbuba Rahman ◽  
M. Rubayet Hasan

Pentose phosphate (PP) pathway, which is ubiquitously present in all living organisms, is one of the major metabolic pathways associated with glucose metabolism. The most important functions of this pathway includes the generation of reducing equivalents in the form of NADPH for reductive biosynthesis, and production of ribose sugars for the biosynthesis of nucleotides, amino acids, and other macromolecules required by all living cells. Under normal conditions of growth, PP pathway is important for cell cycle progression, myelin formation, and the maintenance of the structure and function of brain, liver, cortex and other organs. Under diseased conditions, such as in cases of many metabolic, neurological or malignant diseases, pathological mechanisms augment due to defects in the PP pathway genes. Adoption of alternative metabolic pathways by cells that are metabolically abnormal, or malignant cells that are resistant to chemotherapeutic drugs often plays important roles in disease progression and severity. Accordingly, the PP pathway has been suggested to play critical roles in protecting cancer or abnormal cells by providing reduced environment, to protect cells from oxidative damage and generating structural components for nucleic acids biosynthesis. Novel drugs that targets one or more components of the PP pathway could potentially serve to overcome challenges associated with currently available therapeutic options for many metabolic and non-metabolic diseases. However, careful designing of drugs is critical that takes into the accounts of cell’s broader genomic, proteomic and metabolic contexts under consideration, in order to avoid undesirable side-effects. In this review, we discuss the role of PP pathway under normal and abnormal physiological conditions and the potential of the PP pathway as a target for new drug development to treat metabolic and non-metabolic diseases.


2018 ◽  
Vol 31 (12) ◽  
pp. 1323-1336 ◽  
Author(s):  
Vicente Ramírez ◽  
Beatriz González ◽  
Ana López ◽  
Maria Jose Castelló ◽  
Maria José Gil ◽  
...  

Transfer RNA (tRNA) is the most highly modified class of RNA species in all living organisms. Recent discoveries have revealed unprecedented complexity in the tRNA chemical structures, modification patterns, regulation, and function, suggesting that each modified nucleoside in tRNA may have its own specific function. However, in plants, our knowledge of the role of individual tRNA modifications and how they are regulated is very limited. In a genetic screen designed to identify factors regulating disease resistance in Arabidopsis, we identified SUPPRESSOR OF CSB3 9 (SCS9). Our results reveal SCS9 encodes a tRNA methyltransferase that mediates the 2′-O-ribose methylation of selected tRNA species in the anticodon loop. These SCS9-mediated tRNA modifications enhance susceptibility during infection with the virulent bacterial pathogen Pseudomonas syringae DC3000. Lack of such tRNA modification, as observed in scs9 mutants, specifically dampens plant resistance against DC3000 without compromising the activation of the salicylic acid signaling pathway or the resistance to other biotrophic pathogens. Our results support a model that gives importance to the control of certain tRNA modifications for mounting an effective disease resistance in Arabidopsis toward DC3000 and, therefore, expands the repertoire of molecular components essential for an efficient disease resistance response.


Sign in / Sign up

Export Citation Format

Share Document