scholarly journals Hexapeptides from mammalian inhibitory hormone hunt activate and inactivate nematode reproduction

2021 ◽  
Author(s):  
John E Hart ◽  
Sharad Mohan ◽  
Keith G Davies ◽  
Ben Ferneyhough ◽  
Iain J Clarke ◽  
...  

Increased reproduction (x3) of the entomopathogenic nematode Steinernema siamkayai occurred when exposed to one synthetic peptide (IEPVFT), while the fecundity of worms exposed to hexamer (KLKMNG) was reduced (x0.5). These hexamers were opposite ends of a 14 amino acid (aa) synthetic peptide KLKMNGKNIEPVFT (EPL030). The bioactivity of the hexamers is surprising it is a scrambled-sequence control of another peptide, MKPLTGKVKEFNNI (EPL001) which are bioinformatically obscure. EPL001 emerged from a physicochemical fractionation aimed at finding a postulated hormone that is reproductively related and tissue-mass reducing and has antiproliferative effects on human prostate cancer cells and rat bone marrow cells in vitro. Intracerebroventricular infusion of EPL001 in sheep was associated with elevated growth hormone in peripheral blood and reduced prolactin. The highly dissimilar EPL001 and EPL030 nonetheless have the foregoing biological effects in common in mammalian systems, while being divergently pro- and anti-fecundity respectively in the nematode Caenorhabditis elegans. Immunoprecipitation of EPL001 using an anti-EPL001 antibody suggests it encodes the sheep neuroendocrine prohormone secretogranin II (sSgII). Using bespoke bioinformatics with six sSgII residues deduced bioactivity to key aa: MKPLTGKVKEFNNI. Peptides more potent as cell inhibitors than EPL001 suggest a stereospecific bimodular tri-residue signature (i.e. simultaneous accessibility for binding of two specific trios of aa side chains, MKP & VFN). An evolutionarily conserved receptor is conceptualised as having dimeric binding sites, each with ligand-matching bimodular stereocentres. Sequence analysis and computational modelling suggest the activity of the control peptide EPL030 and its N- and C-terminal hexapeptide progeny is due the novel hormonal motif MKPVFN.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1982
Author(s):  
Wataru Ariyoshi ◽  
Shiika Hara ◽  
Ayaka Koga ◽  
Yoshie Nagai-Yoshioka ◽  
Ryota Yamasaki

Although the anti-tumor and anti-infective properties of β-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of β-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize β-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker’s yeast, as well as β-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of β-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of β-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3833 ◽  
Author(s):  
John E. Hart ◽  
Iain J. Clarke ◽  
Gail P. Risbridger ◽  
Ben Ferneyhough ◽  
Mónica Vega-Hernández

In the context of a hunt for a postulated hormone that is tissue-mass inhibiting and reproductively associated, there is described probable relatedness to a granin protein. A 7–8 kDa polypeptide candidate (gels/MS) appeared in a bioassay-guided fractionation campaign involving sheep plasma. An N-terminal sequence of 14 amino acids was obtained for the polypeptide by Edman degradation. Bioinformatics and molecular biology failed to illuminate any ovine or non-ovine protein which might relate to this sequence. The N-terminal sequence was synthesized as the 14mer EPL001 peptide and surprisingly found to be inhibitory in an assay in vivo of compensatory renal growth in the rat and modulatory of nematode fecundity, in line with the inhibitory hormone hypothesis. Antibodies were raised to EPL001 and their deployment upheld the hypothesis that the EPL001 amino acid sequence is meaningful and relevant, notwithstanding bioinformatic obscurity. Immunohistochemistry (IHC) in sheep, rodents and humans yielded staining of seeming endocrine relevance (e.g. hypothalamus, gonads and neuroendocrine cells in diverse tissues), with apparent upregulation in certain human tumours (e.g. pheochromocytoma). Discrete IHC staining in Drosophila melanogaster embryo brain was seen in glia and in neuroendocrine cells, with staining likely in the corpus cardiacum. The search for the endogenous antigen involved immunoprecipitation (IP) followed by liquid chromatography and mass spectrometry (LC–MS). Feedstocks were PC12 conditioned medium and aqueous extract of rat hypothalamus—both of which had anti-proliferative and pro-apoptotic effects in an assay in vitro involving rat bone marrow cells, which inhibition was subject to prior immunodepletion with an anti-EPL001 antibody—together with fruit fly embryo material. It is concluded that the mammalian antigen is likely secretogranin II (SgII) related. The originally seen 7–8 kDa polypeptide is suggested to be a new proteoform of secretogranin II of ∼70 residues, SgII-70, with the anti-EPL001 antibody seeing a discontinuous epitope. The fly antigen is probably Q9W2X8 (UniProt), an uncharacterised protein newly disclosed as a granin and provisionally dubbed macrogranin I (MgI). SgII and Q9W2X8 merit further investigation in the context of tissue-mass inhibition.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3596
Author(s):  
Therese Bredholt Onyango ◽  
Sigrun M. Hjelle ◽  
Ingvild Haaland ◽  
Olav K. Vintermyr ◽  
Anne Christine Johannessen ◽  
...  

Khat (Catha edulis (Vahl) Forssk. ex Endl.) is habitually used as a natural stimulant by millions of people, but is associated with adverse effects on gastrointestinal, cardiovascular and central neural systems. At the cellular level khat toxicity involves p53 induction and cell cycle arrest, decreased mitochondrial function and activation of receptor- and mitochondria-mediated cell death pathways. In this study we have examined an extract of khat for induction of p53 post-translational modifications (PTMs) and the functional role of p53 in khat-mediated cell death. Khat was shown to induce phosphorylation and acetylation of p53 in both the khat-sensitive MOLM-13 and the khat-resistant MV-4-11 cell line, but accumulation of the full-length p53 isoform was only observed in the khat sensitive cell line. Small molecule inhibitors of p38 MAP kinase sensitized MV-4-11 cells for khat-treatment without concomitant stabilization of p53. Experiments using a p53 knock-down cell line and murine p53 knock-out bone marrow cells indicated that p53 was redundant in khat-mediated cell death in vitro. We suggest that analysis of isoform patterns and p53 PTMs are useful for elucidation of biological effects of complex plant extracts, and that p53 protein analysis is particularly useful in the search for new chemical probes and experimental cancer therapeutics.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Author(s):  
Н.В. Белобородова ◽  
В.В. Мороз ◽  
А.Ю. Бедова

Интеграция метаболизма макроорганизма и его микробиоты, обеспечивающая в норме симбиоз и саногенез, нарушается при заболеваниях, травме, критическом состоянии, и вектор взаимодействия может изменяться в пользу прокариотов по принципу «метаболиты бактерий - против хозяина». Анализ литературы показал, что, с одной стороны, имеется живой интерес к ароматическим микробным метаболитам, с другой - отсутствует четкое представление об их роли в организме человека. Публикации, касающиеся ряда ароматических микробных метаболитов (фенилкарбоновых кислот, ФКК), как правило, не связаны между собой по тематике и направлены на решение тех или иных прикладных задач в разных областях биологии и медицины. Цель обзора - анализ информации о происхождении, биологических эффектах ФКК в экспериментах in vitro и in vivo , и клинических наблюдениях. Обобщая результаты приведенных в обзоре исследований на клеточном, субклеточном и молекулярном уровнях, логично предположить участие ароматических микробных метаболитов в патогенезе полиорганной недостаточности при сепсисе. Наиболее перспективным для раскрытия роли ароматических микробных метаболитов представляется изучение механизмов вторичной почечной недостаточности и септической энцефалопатии. Важным направлением для будущих исследований является изучение влияния продуктов микробной биодеградации ароматических соединений на развитие диссеминированного внутрисосудистого свертывания крови, артериальной гипотензии и септического шока. Результаты дальнейших исследований будут иметь не только фундаментальное значение, но и обогатят практическую медицину новыми диагностическими и лечебными технологиями. Significant increases in blood concentrations of some aromatic metabolites (phenylcarboxylic acids, PhCAs) in patients with sepsis have been previously shown. Enhanced bacterial biodegradation of aromatic compounds has been demonstrated to considerably contribute to this process. Integration of macroorganism metabolism and its microbiota, which provides normal symbiosis and sanogenesis, is disturbed in diseases, trauma, and critical conditions. Direction of this interaction may change in favor of prokaryotes according to the principle, “bacterial metabolites are against the host”. Analysis of literature showed a particular interest of many investigators to aromatic microbial metabolites. However, there is no clear understanding of their role in the human body. Publications on PhCAs are generally not thematically interrelated and usually focus on solving applied tasks in different fields of biology and medicine. The aim of this work was to consolidate existing information about origin and biological effects of PhCAs in in vitro / in vivo experiments and some clinical findings. The presented summary of reported data from studies performed at cellular, sub-cellular, and molecular levels suggests participation of aromatic microbial metabolites in the pathogenesis of multiple organ failure in sepsis. Studying mechanisms of secondary renal failure and septic encephalopathy is most promising for discovering the function of aromatic microbial metabolites. Effects of microbial biodegradation products of aromatic substances on development of disseminated intravascular coagulation, hypotension, and septic shock are an important challenge for future studies. Results of further investigations will be not only fundamental, but will also enrich medical practice with new diagnostic and therapeutic technologies.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2019 ◽  
Vol 26 (7) ◽  
pp. 494-501 ◽  
Author(s):  
Sameer Suresh Bhagyawant ◽  
Dakshita Tanaji Narvekar ◽  
Neha Gupta ◽  
Amita Bhadkaria ◽  
Ajay Kumar Gautam ◽  
...  

Background: Diabetes and hypertension are the major health concern and alleged to be of epidemic proportions. This has made it a numero uno subject at various levels of investigation. Glucosidase inhibitor provides the reasonable option in treatment of Diabetes Mellitus (DM) as it specifically targets post prandial hyperglycemia. The Angiotensin Converting Enzyme (ACE) plays an important role in hypertension. Therefore, inhibition of ACE in treatment of elevated blood pressure attracts special interest of the scientific community. Chickpea is a food legume and seeds contain carbohydrate binding protein- a lectin. Some of the biological properties of this lectin hitherto been elucidated. Methods: Purified by ion exchange chromatography, chickpea lectin was tested for its in vitro antioxidant, ACE-I inhibitory and anti-diabetic characteristic. Results: Lectin shows a characteristic improvement over the synthetic drugs like acarbose (oral anti-diabetic drug) and captopril (standard antihypertensive drug) when, their IC50 values are compared. Lectin significantly inhibited α-glucosidase and α-amylase in a concentration dependent manner with IC50 values of 85.41 ± 1.21 ҝg/ml and 65.05 ± 1.2 µg/ml compared to acarbose having IC50 70.20 ± 0.47 value of µg/ml and 50.52 ± 1.01 µg/ml respectively. β-Carotene bleaching assay showed antioxidant activity of lectin (72.3%) to be as active as Butylated Hydroxylanisole (BHA). In addition, lectin demonstrated inhibition against ACE-I with IC50 value of 57.43 ± 1.20 µg/ml compared to captopril. Conclusion: Lectin demonstrated its antioxidant character, ACE-I inhibition and significantly inhibitory for α-glucosidase and α-amylase seems to qualify as an anti-hyperglycemic therapeutic molecule. The biological effects of chickpea lectin display potential for reducing the parameters of medically debilitating conditions. These characteristics however needs to be established under in vivo systems too viz. animals through to humans.


2019 ◽  
Vol 18 (14) ◽  
pp. 1983-1990 ◽  
Author(s):  
V. Lenin Maruthanila ◽  
Ramakrishnan Elancheran ◽  
Ajaikumar B. Kunnumakkar ◽  
Senthamaraikannan Kabilan ◽  
Jibon Kotoky

Emerging evidence present credible support in favour of the potential role of mahanine and girinimbine. Non-toxic herbal carbazole alkaloids occur in the edible part of Murraya koenigii, Micromelum minutum, M. zeylanicum, and M. euchrestiolia. Mahanine and girinimbine are the major potent compounds from these species. In fact, they interfered with tumour expansion and metastasis development through down-regulation of apoptotic and antiapoptotic protein, also involved in the stimulation of cell cycle arrest. Consequently, these compounds were well proven for the in-vitro and in vivo evaluation that could be developed as novel agents either alone or as an adjuvant to conventional therapeutics. Therefore, mahanine and girinimbine analogs have the potential to be the promising chemopreventive agents for the tumour recurrence and the treatment of human malignancies. In this review, an updated wide-range of pleiotropic anticancer and biological effects induction by mahanine and girinimbine against cancer cells were deeply summarized.


Sign in / Sign up

Export Citation Format

Share Document