scholarly journals The exchange of vitamin B1 and its biosynthesis intermediates in synthetic microbial communities shapes the community composition and reveals complexities of nutrient sharing

2021 ◽  
Author(s):  
Rupali R. M. Sathe ◽  
Ryan W. Paerl ◽  
Amrita B. Hazra

AbstractMicrobial communities occupy diverse niches in nature, and exchanges of metabolites such as carbon sources, amino acids, and vitamins occur routinely among the community members. While large-scale metagenomic and metabolomic studies shed some light on these exchanges, the contribution of individual species and the molecular details of specific interactions are difficult to track. Here, we explore the molecular picture of vitamin B1 (thiamin) metabolism occurring in synthetic communities of Escherichia coli thiamin auxotrophs which engage in the exchange of thiamin and its biosynthesis intermediates. In E. coli, the two parts of thiamin – the 4-amino-5-hydroxymethyl-2-methylpyrimidine and the 4-methyl-5-(2-hydroxyethyl)thiazole – are synthesized by separate pathways using enzymes ThiC and ThiG, respectively, and are then joined by ThiE to form thiamin. We observed that even though E. coli ΔthiC, ΔthiE, and ΔthiG mutants are thiamin auxotrophs, co-cultures of ΔthiC-ΔthiE and ΔthiC-ΔthiG grow in a thiamin-deficient minimal medium, whereas the ΔthiE-ΔthiG co-culture does not. Analysis of the exchange of thiamin and its intermediates in Vibrio anguillarum co-cultures, and in mixed co-cultures of V. anguillarum and E. coli revealed that the general pattern of thiamin metabolism and exchange among microbes is conserved across species. Specifically, the microorganisms exchange HMP and thiamin easily among themselves but not THZ. Furthermore, we observe that the availability of exogenous thiamin in the media affects whether these strains interact with each other or grow independently. This underscores the importance of the exchange of essential metabolites as a defining factor in building and modulating synthetic or natural microbial communities.

mSystems ◽  
2019 ◽  
Vol 4 (3) ◽  
Author(s):  
Manuel Kleiner

ABSTRACT Metaproteomics is the large-scale identification and quantification of proteins from microbial communities and thus provides direct insight into the phenotypes of microorganisms on the molecular level. Initially, metaproteomics was mainly used to assess the “expressed” metabolism and physiology of microbial community members. However, recently developed metaproteomic tools allow quantification of per-species biomass to determine community structure, in situ carbon sources of community members, and the uptake of labeled substrates by community members. In this perspective, I provide a brief overview of the questions that we can currently address, as well as new metaproteomics-based approaches that we and others are developing to address even more questions in the study of microbial communities and plant and animal microbiota. I also highlight some areas and technologies where I anticipate developments and potentially major breakthroughs in the next 5 years and beyond.


2018 ◽  
Author(s):  
Manuel Kleiner ◽  
Xiaoli Dong ◽  
Tjorven Hinzke ◽  
Juliane Wippler ◽  
Erin Thorson ◽  
...  

AbstractMeasurements of the carbon stable isotope ratio (δ13C) are widely used in biology to address major questions regarding food sources and metabolic pathways used by organisms. Measurement of these so called stable carbon isotope fingerprints (SIFs) for microbes involved in biogeochemical cycling and microbiota of plants and animals have led to major discoveries in environmental microbiology. Currently, obtaining SIFs for microbial communities is challenging as the available methods either only provide limited taxonomic resolution, such as with the use of lipid biomarkers, or are limited in throughput, such as NanoSIMS imaging of single cells.Here we present “direct Protein-SIF” and the Calis-p software package (https://sourceforge.net/projects/calis-p/), which enable high-throughput measurements of accurate δ13C values for individual species within a microbial community. We benchmark the method using 20 pure culture microorganisms and show that the method reproducibly provides SIF values consistent with gold standard bulk measurements performed with an isotope ratio mass spectrometer. Using mock community samples, we show that SIF values can also be obtained for individual species within a microbial community. Finally, a case study of an obligate bacteria-animal symbiosis showed that direct Protein-SIF confirms previous physiological hypotheses and can provide unexpected new insights into the symbionts’ metabolism. This confirms the usefulness of this new approach to accurately determine δ13C values for different species in microbial community samples.SignificanceTo understand the roles that microorganisms play in diverse environments such as the open ocean and the human intestinal tract, we need an understanding of their metabolism and physiology. A variety of methods such as metagenomics and metaproteomics exist to assess the metabolism of environmental microorganisms based on gene content and gene expression. These methods often only provide indirect evidence for which substrates are used by a microorganism in a community. The direct Protein-SIF method that we developed allows linking microbial species in communities to the environmental carbon sources they consume by determining their stable carbon isotope signature. Direct Protein-SIF also allows assessing which carbon fixation pathway is used by autotrophic microorganisms that directly assimilate CO2.


2018 ◽  
Vol 115 (24) ◽  
pp. E5576-E5584 ◽  
Author(s):  
Manuel Kleiner ◽  
Xiaoli Dong ◽  
Tjorven Hinzke ◽  
Juliane Wippler ◽  
Erin Thorson ◽  
...  

Measurements of stable carbon isotope ratios (δ13C) are widely used in biology to address questions regarding food sources and metabolic pathways used by organisms. The analysis of these so-called stable isotope fingerprints (SIFs) for microbes involved in biogeochemical cycling and microbiota of plants and animals has led to major discoveries in environmental microbiology. Currently, obtaining SIFs for microbial communities is challenging as the available methods either only provide low taxonomic resolution, such as the use of lipid biomarkers, or are limited in throughput, such as nanoscale secondary ion MS imaging of single cells. Here we present “direct protein-SIF” and the Calis-p software package (https://sourceforge.net/projects/calis-p/), which enable high-throughput measurements of accurate δ13C values for individual species within a microbial community. We benchmark the method using 20 pure culture microorganisms and show that the method reproducibly provides SIF values consistent with gold-standard bulk measurements performed with an isotope ratio mass spectrometer. Using mock community samples, we demonstrate that SIF values can also be obtained for individual species within a microbial community. Finally, a case study of an obligate bacteria–animal symbiosis shows that direct protein-SIF confirms previous physiological hypotheses and can provide unexpected insights into the symbionts’ metabolism. This confirms the usefulness of this approach to accurately determine δ13C values for different species in microbial community samples.


2019 ◽  
Author(s):  
Michael Baumgartner ◽  
Florian Bayer ◽  
Katia R. Pfrunder-Cardozo ◽  
Angus Buckling ◽  
Alex R. Hall

AbstractCountering the rise of antibiotic resistant pathogens requires improved understanding of how resistance emerges and spreads in individual species, which are often embedded in complex microbial communities such as the human gut microbiome. Interactions with other microorganisms in such communities might suppress growth and resistance evolution of individual species (e.g. via resource competition), but could also potentially accelerate resistance evolution via horizontal transfer of resistance genes. It remains unclear how these different effects balance out, partly because it is difficult to observe them directly. Here, we used a gut microcosm approach to quantify the effect of three human gut microbiome communities on growth and resistance evolution of a focal strain of Escherichia coli. We found the resident microbial communities not only suppressed growth and colonization by focal E. coli, they also prevented it from evolving antibiotic resistance upon exposure to a beta-lactam antibiotic. With samples from all three human donors, our focal E. coli strain only evolved antibiotic resistance in the absence of the resident microbial community, even though we found resistance genes, including a highly effective resistance plasmid, in resident microbial communities. We identified physical constraints on plasmid transfer that can explain why our focal strain failed to acquire some of these beneficial resistance genes, and we found some chromosomal resistance mutations were only beneficial in the absence of the resident microbiota. This suggests, depending on in situ gene transfer dynamics, interactions with resident microbiota can inhibit antibiotic resistance evolution of individual species.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.


2018 ◽  
Vol 16 (1) ◽  
pp. 67-76
Author(s):  
Disyacitta Neolia Firdana ◽  
Trimurtini Trimurtini

This research aimed to determine the properness and effectiveness of the big book media on learning equivalent fractions of fourth grade students. The method of research is Research and Development  (R&D). This study was conducted in fourth grade of SDN Karanganyar 02 Kota Semarang. Data sources from media validation, material validation, learning outcomes, and teacher and students responses on developed media. Pre-experimental research design with one group pretest-posttest design. Big book developed consist of equivalent fractions material, students learning activities sheets with rectangle and circle shape pictures, and questions about equivalent fractions. Big book was developed based on students and teacher needs. This big book fulfill the media validity of 3,75 with very good criteria and scored 3 by material experts with good criteria. In large-scale trial, the result of students posttest have learning outcomes completness 82,14%. The result of N-gain calculation with result 0,55 indicates the criterion “medium”. The t-test result 9,6320 > 2,0484 which means the average of posttest outcomes is better than the average of pretest outcomes. Based on that data, this study has produced big book media which proper and effective as a media of learning equivalent fractions of fourth grade elementary school.


2019 ◽  
Vol 22 (5) ◽  
pp. 346-354
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Aim and Objective: Antibiotic resistance is a serious constraint to the development of new effective antibacterials. Therefore, the discovery of the new antibacterials remains one of the main challenges in modern medicinal chemistry. This study was undertaken to identify novel molecules with antibacterial activity. Materials and Methods: Using our unique double-reporter system, in-house large-scale HTS campaign was conducted for the identification of antibacterial potency of small-molecule compounds. The construction allows us to visually assess the underlying mechanism of action. After the initial HTS and rescreen procedure, luciferase assay, C14-test, determination of MIC value and PrestoBlue test were carried out. Results: HTS rounds and rescreen campaign have revealed the antibacterial activity of a series of Nsubstituted triazolo-azetidines and their isosteric derivatives that has not been reported previously. Primary hit-molecule demonstrated a MIC value of 12.5 µg/mL against E. coli Δ tolC with signs of translation blockage and no SOS-response. Translation inhibition (26%, luciferase assay) was achieved at high concentrations up to 160 µg/mL, while no activity was found using C14-test. The compound did not demonstrate cytotoxicity in the PrestoBlue assay against a panel of eukaryotic cells. Within a series of direct structural analogues bearing the same or bioisosteric scaffold, compound 2 was found to have an improved antibacterial potency (MIC=6.25 µg/mL) close to Erythromycin (MIC=2.5-5 µg/mL) against the same strain. In contrast to the parent hit, this compound was more active and selective, and provided a robust IP position. Conclusion: N-substituted triazolo-azetidine scaffold may be used as a versatile starting point for the development of novel active and selective antibacterial compounds.


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2017 ◽  
Vol 6 (8) ◽  
pp. 5459
Author(s):  
Chandra Teja K. ◽  
Rahman S. J.

Entomopathogenic fungi like Beauveria bassiana, Metarhizium anisopliae and Lecanicillium lecanii are used in biological control of agricultural insect pests. Their specific mode of action makes them an effective alternative to the chemical Insecticides. Virulent strains of Entomopathogenic fungi are effectively formulated and used as bio-insecticides world-wide. Amenable and economical multiplication of a virulent strain in a large scale is important for them to be useful in the field. Culture media plays a major role in the large-scale multiplication of virulent strains of Entomopathogens. Different substrates and media components are being used for this purpose. Yet, each strain differs in its nutritional requirements for the maximum growth and hence it is necessary to standardize the right components and their optimum concentrations in the culture media for a given strain of Entomopathogen. In the current study, three different nitrogen sources and two different carbon sources were tried to standardize the mass multiplication media for seven test isolates of Entomopathogenic fungi. A study was also conducted to determine the ideal grain media for the optimum conidial yields of the test isolates. Yeast extract was found to be the best Nitrogen source for the isolates. The isolates tested, differed in their nutritional requirements and showed variation in the best nitrogen and carbon sources necessary for their growth. Variation was also found in the optimum concentration of both the ingredients for the growth and sporulation of the isolates. In the solid-state fermentation study, rice was found to be the best grain for the growth of most of the fungi followed by barley. The significance of such a study in the development of an effective Myco-insecticide is vital and can be successfully employed in agriculture is discussed.


2021 ◽  
Vol 13 (6) ◽  
pp. 1180
Author(s):  
Da Guo ◽  
Xiaoning Song ◽  
Ronghai Hu ◽  
Xinming Zhu ◽  
Yazhen Jiang ◽  
...  

The Hindu Kush Himalayan (HKH) region is one of the most ecologically vulnerable regions in the world. Several studies have been conducted on the dynamic changes of grassland in the HKH region, but few have considered grassland net ecosystem productivity (NEP). In this study, we quantitatively analyzed the temporal and spatial changes of NEP magnitude and the influence of climate factors on the HKH region from 2001 to 2018. The NEP magnitude was obtained by calculating the difference between the net primary production (NPP) estimated by the Carnegie–Ames Stanford Approach (CASA) model and the heterotrophic respiration (Rh) estimated by the geostatistical model. The results showed that the grassland ecosystem in the HKH region exhibited weak net carbon uptake with NEP values of 42.03 gC∙m−2∙yr−1, and the total net carbon sequestration was 0.077 Pg C. The distribution of NEP gradually increased from west to east, and in the Qinghai–Tibet Plateau, it gradually increased from northwest to southeast. The grassland carbon sources and sinks differed at different altitudes. The grassland was a carbon sink at 3000–5000 m, while grasslands below 3000 m and above 5000 m were carbon sources. Grassland NEP exhibited the strongest correlation with precipitation, and it had a lagging effect on precipitation. The correlation between NEP and the precipitation of the previous year was stronger than that of the current year. NEP was negatively correlated with temperature but not with solar radiation. The study of the temporal and spatial dynamics of NEP in the HKH region can provide a theoretical basis to help herders balance grazing and forage.


Sign in / Sign up

Export Citation Format

Share Document