scholarly journals Changes in microbial composition, diversity, and functionality in the Amblyomma maculatum microbiome following infection with Rickettsia parkeri

2021 ◽  
Author(s):  
Abdulsalam Adegoke ◽  
Deepak Kumar ◽  
Khemraj Budachetri ◽  
Shahid Karim

Background Ticks are the primary vectors for emerging and resurging pathogens of public health significance worldwide. Examining tick bacterial composition, diversity, and functionality across developmental stages and tissues is necessary for designing new strategies to control ticks and prevent tick-borne diseases. Methods A high-throughput sequencing approach was used to determine the influence of blood meal and Rickettsia parkeri infection on changes in Amblyomma maculatum microbiome composition, diversity, and functionality across the developmental timeline and in different tissues. Quantitative insight into microbial ecology analysis allowed us to determine microbial population structure, composition, and diversity. A non-metric multidimensional scaling, the sparse correlations for compositional data (SparCC) module, and phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) software were used in the assessment. Results The Amblyomma maculatum microbiome comprises ten bacterial genera present across tick life cycle stages. Among the top ten bacterial genera (the core tick microbiome), Rickettsia, Francisella, and Candidatus_Midichloria are the key players, with positive interactions within each developmental stage and adult tick organ tested. The bacterial abundances, based on the number of operational taxonomic units (OTUs), increase with blood meal in each stage, helping bacterial floral growth. The growth in bacterial numbers is related to highly abundant energy metabolism orthologs with blood meal, according to functional analysis. Whereas R. parkeri had a positive correlation with Candidatus_Midichloria during the tick life cycle, based on the increased number of OTUs and network analysis, this was due to an increased level of metabolic activity. Interestingly, R. parkeri replaces Francisella, based on the lower level of OTUs representing Francisella in R. parkeri-infected ticks (in all stages/organs) and negatively correlated according to network and linear discriminant analysis effect size (LEfSe). Conclusions We found that Rickettsia and Francisella predominate in the core microbiome of the Gulf Coast tick, whereas Candidatus_Midichloria and Cutibacterium levels increase with infection. Network analysis and functional annotation suggest that R. parkeri interacts positively with Candidatus Midichloria and negatively with Francisella and that metabolic profiles are upregulated with blood meal and R. parkeri infection. Overall, this is the first study to determine the combinatorial outcome of blood meal and pathogen interaction on microbiome composition over the developmental stages of Am. maculatum. This new study expands on our existing knowledge of the Am. maculatum microbiome and further highlights the need to investigate pathogen and symbiont interactions between R. parkeri and Francisella or Candidatus_Midichloria to facilitate the development of strategies for controlling tick-transmitted diseases.

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 298
Author(s):  
Alison E. Murray ◽  
Nicole E. Avalon ◽  
Lucas Bishop ◽  
Karen W. Davenport ◽  
Erwan Delage ◽  
...  

Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64°46′ S, 64°03′ W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3–V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)—20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Giulietta Minozzi ◽  
Filippo Biscarini ◽  
Emanuela Dalla Costa ◽  
Matteo Chincarini ◽  
Nicola Ferri ◽  
...  

The microbiome is now seen as an important resource to understand animal health and welfare in many species. However, there are few studies aiming at identifying the association between fecal microbiome composition and husbandry conditions in sheep. A wide range of stressors associated with management and housing of animals increases the hypothalamic–pituitary axis activity, with growing evidence that the microbiome composition can be modified. Therefore, the purpose of the present study was to describe the core microbiome in sheep, characterized using 16S rRNA gene sequencing, and to explore whether exposure to stressful husbandry conditions changed sheep hindgut microbiome composition. Sheep (n = 10) were divided in two groups: isolated group (individually separated for 3 h/day) and control group (housed in the home pen for the entire trial period). Sheep core microbiome was dominated by Firmicutes (43.6%), Bacteroidetes (30.38%), Proteobacteria (10.14%), and Verrucomicrobia (7.55%). Comparative results revealed few operational taxonomic units (OTUs) with significantly different relative abundance between groups. Chao1, abundance-based coverage estimator (ACE), and Fisher’s alpha indices did not show differences between groups. OTU-based Bray–Curtis distances between groups were not significant (p-value = 0.07). In conclusion, these results describing the core microbiome of sheep do not suggest a strong effect of stressful husbandry conditions on microbial composition.


2020 ◽  
Author(s):  
Alison Murray ◽  
Nicole Avalon ◽  
Lucas Bishop ◽  
Karen W. Davenport ◽  
Erwan Delage ◽  
...  

AbstractPolar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganismal diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which the bioactive macrolide that has specific activity to melanoma, palmerolide A (PalA), was found. PalA bears structural resemblance to a combined nonribosomal peptide polyketide, that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64° 46'S, 64° 03'W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island archipelago. The microbiome composition (V3-V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacteria, 20 of which were distinct from regional bacterioplankton. Co-occurrence analysis yielded several potentially interacting subsystems and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. Taking these results together with an analysis of biosynthetic potential of related microbiome taxa indicates a core microbiome with substantial promise for natural product biosynthesis that likely interact with the host and with each other.


Parasitology ◽  
1977 ◽  
Vol 75 (3) ◽  
pp. 309-316 ◽  
Author(s):  
E. Schein ◽  
M. Warnecke ◽  
P. Kirmse

SummaryThe life-cycle of Theileria parva in the gut of the tick Rhipicephalus appendiculatus was investigated in Giemsa-stained smears and in wet preparations under the phase-contrast microscope. The different developmental stages of T. parva were seen in a large proportion of specially-selected R. appendiculatus tickes. After the intra-erythorcytic merozoites were engorged by the ticks during a blood meal, the following development was observed. (1) In the lumen of the gut of infected nymphs, spindle-shaped microgamonts developed out of the ring-forms. These broke up into several thread-like microgameters after nuclear division and development of thread-like cytoplasmic projections. The ring-froms developed into round-forms of 3–4 μm in diameter which are considered to be macrogametes. (2) From the 6th day after repletion, zygotes with a clear zone in the centre appeared in the epithelial cells of the tick's gut. A steady increase in size and a progressively denser cytoplasm were observed up to the 3rd day after moulting to adult ticks. (3) Subsequently a slightly angular, retort-like stage developed by invagination inside the rounded zygotes, and from the 5th day after moulting this stage developed further into a club-shaped kinete. The kinetes propelled themselves in the gut by active gliding movements.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 638
Author(s):  
Monika Mazur ◽  
Daria Wojciechowska ◽  
Ewa Sitkiewicz ◽  
Agata Malinowska ◽  
Bianka Świderska ◽  
...  

The slime mold Dictyostelium discoideum’s life cycle includes different unicellular and multicellular stages that provide a convenient model for research concerning intracellular and intercellular mechanisms influencing mitochondria’s structure and function. We aim to determine the differences between the mitochondria isolated from the slime mold regarding its early developmental stages induced by starvation, namely the unicellular (U), aggregation (A) and streams (S) stages, at the bioenergetic and proteome levels. We measured the oxygen consumption of intact cells using the Clarke electrode and observed a distinct decrease in mitochondrial coupling capacity for stage S cells and a decrease in mitochondrial coupling efficiency for stage A and S cells. We also found changes in spare respiratory capacity. We performed a wide comparative proteomic study. During the transition from the unicellular stage to the multicellular stage, important proteomic differences occurred in stages A and S relating to the proteins of the main mitochondrial functional groups, showing characteristic tendencies that could be associated with their ongoing adaptation to starvation following cell reprogramming during the switch to gluconeogenesis. We suggest that the main mitochondrial processes are downregulated during the early developmental stages, although this needs to be verified by extending analogous studies to the next slime mold life cycle stages.


1987 ◽  
Vol 65 (6) ◽  
pp. 1331-1336
Author(s):  
Z. Kabata

The morphology of the developmental stages of Neobrachiella robusta (Wilson, 1912) (Copepoda: Siphonostomatoida) is described. The copepod is parasitic on the gill rakers of Sebastes alutus (Gilbert, 1890) (Teleostei: Scorpaeniformes). The life cycle of this copepod consists of a copepodid stage, followed by four chalimus stages and a relatively long preadult stage, which undergoes extensive metamorphosis. The copepods aggregate on the outer row of long gill rakers of the first gill arch, as many as 97% of them being attached to these rakers. Some of the rakers become distorted, but a connection between the presence of N. robusta and these abnormalities could not be established.


2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


Sign in / Sign up

Export Citation Format

Share Document