scholarly journals Structural basis of main proteases of coronavirus bound to drug candidate PF-07321332

2021 ◽  
Author(s):  
Jian Li ◽  
Cheng Lin ◽  
Xuelan Zhou ◽  
Fanglin Zhong ◽  
Pei Zeng ◽  
...  

The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genus of coronaviruses is the substrate binding site of the main protease (Mpro or 3CLpro), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332 developed by Pfizer is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here we report three crystal structures of main protease of SARS-CoV-2, SARS-CoV and MERS-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of main protease harbors multiple inhibitor binding sites, where PF-07321332 occupies subsites S1, S2 and S4 and appears more restricted compared with other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of main proteases from different coronaviruses. Given the importance of main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Noa Katz ◽  
Eitamar Tripto ◽  
Naor Granik ◽  
Sarah Goldberg ◽  
Orna Atar ◽  
...  

AbstractWe apply an oligo-library and machine learning-approach to characterize the sequence and structural determinants of binding of the phage coat proteins (CPs) of bacteriophages MS2 (MCP), PP7 (PCP), and Qβ (QCP) to RNA. Using the oligo library, we generate thousands of candidate binding sites for each CP, and screen for binding using a high-throughput dose-response Sort-seq assay (iSort-seq). We then apply a neural network to expand this space of binding sites, which allowed us to identify the critical structural and sequence features for binding of each CP. To verify our model and experimental findings, we design several non-repetitive binding site cassettes and validate their functionality in mammalian cells. We find that the binding of each CP to RNA is characterized by a unique space of sequence and structural determinants, thus providing a more complete description of CP-RNA interaction as compared with previous low-throughput findings. Finally, based on the binding spaces we demonstrate a computational tool for the successful design and rapid synthesis of functional non-repetitive binding-site cassettes.


2020 ◽  
Vol 76 (5) ◽  
pp. 447-457
Author(s):  
Ping Huang ◽  
Shiwang Wu ◽  
Shaoqing Yang ◽  
Qiaojuan Yan ◽  
Zhengqiang Jiang

Pullulanase (EC 3.2.1.41) is a well known starch-debranching enzyme that catalyzes the cleavage of α-1,6-glycosidic linkages in α-glucans such as starch and pullulan. Crystal structures of a type I pullulanase from Paenibacillus barengoltzii (PbPulA) and of PbPulA in complex with maltopentaose (G5), maltohexaose (G6)/α-cyclodextrin (α-CD) and β-cyclodextrin (β-CD) were determined in order to better understand substrate binding to this enzyme. PbPulA belongs to glycoside hydrolase (GH) family 13 subfamily 14 and is composed of three domains (CBM48, A and C). Three carbohydrate-binding sites identified in PbPulA were located in CBM48, near the active site and in domain C, respectively. The binding site in CBM48 was specific for β-CD, while that in domain C has not been reported for other pullulanases. The domain C binding site had higher affinity for α-CD than for G6; a small motif (FGGEH) seemed to be one of the major determinants for carbohydrate binding in this domain. Structure-based mutations of several surface-exposed aromatic residues in CBM48 and domain C had a debilitating effect on the activity of the enzyme. These results suggest that both CBM48 and domain C play a role in binding substrates. The crystal forms described contribute to the understanding of pullulanase domain–carbohydrate interactions.


2020 ◽  
Vol 295 (52) ◽  
pp. 18266-18275
Author(s):  
Sebastian Kiehstaller ◽  
Christian Ottmann ◽  
Sven Hennig

Aminopeptidase N (APN, CD13) is a transmembrane ectopeptidase involved in many crucial cellular functions. Besides its role as a peptidase, APN also mediates signal transduction and is involved in the activation of matrix metalloproteinases (MMPs). MMPs function in tissue remodeling within the extracellular space and are therefore involved in many human diseases, such as fibrosis, rheumatoid arthritis, tumor angiogenesis, and metastasis, as well as viral infections. However, the exact mechanism that leads to APN-driven MMP activation is unclear. It was previously shown that extracellular 14-3-3 adapter proteins bind to APN and thereby induce the transcription of MMPs. As a first step, we sought to identify potential 14-3-3–binding sites in the APN sequence. We constructed a set of phosphorylated peptides derived from APN to probe for interactions. We identified and characterized a canonical 14-3-3–binding site (site 1) within the flexible, structurally unresolved N-terminal APN region using direct binding fluorescence polarization assays and thermodynamic analysis. In addition, we identified a secondary, noncanonical binding site (site 2), which enhances the binding affinity in combination with site 1 by many orders of magnitude. Finally, we solved crystal structures of 14-3-3σ bound to mono- and bis-phosphorylated APN-derived peptides, which revealed atomic details of the binding mode of mono- and bivalent 14-3-3 interactions. Therefore, our findings shed some light on the first steps of APN-mediated MMP activation and open the field for further investigation of this important signaling pathway.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5221
Author(s):  
Salvatore La Gatta ◽  
Linda Leone ◽  
Ornella Maglio ◽  
Maria De Fenza ◽  
Flavia Nastri ◽  
...  

Understanding the structural determinants for metal ion coordination in metalloproteins is a fundamental issue for designing metal binding sites with predetermined geometry and activity. In order to achieve this, we report in this paper the design, synthesis and metal binding properties of METP3, a homodimer made up of a small peptide, which self assembles in the presence of tetrahedrally coordinating metal ions. METP3 was obtained through a redesign approach, starting from the previously developed METP molecule. The undecapeptide sequence of METP, which dimerizes to house a Cys4 tetrahedral binding site, was redesigned in order to accommodate a Cys2His2 site. The binding properties of METP3 were determined toward different metal ions. Successful assembly of METP3 with Co(II), Zn(II) and Cd(II), in the expected 2:1 stoichiometry and tetrahedral geometry was proven by UV-visible spectroscopy. CD measurements on both the free and metal-bound forms revealed that the metal coordination drives the peptide chain to fold into a turned conformation. Finally, NMR data of the Zn(II)-METP3 complex, together with a retrostructural analysis of the Cys-X-X-His motif in metalloproteins, allowed us to define the model structure. All the results establish the suitability of the short METP sequence for accommodating tetrahedral metal binding sites, regardless of the first coordination ligands.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kangcheng Song ◽  
Miao Wei ◽  
Wenjun Guo ◽  
Li Quan ◽  
Yunlu Kang ◽  
...  

TRPC5 channel is a non-selective cation channel that participates diverse physiological processes. TRPC5 inhibitors show promise in the treatment of anxiety disorder, depression and kidney disease. However, the binding sites and inhibitory mechanism of TRPC5 inhibitors remain elusive. Here we present the cryo-EM structures of human TRPC5 in complex with two distinct inhibitors, namely clemizole and HC-070, to the resolution of 2.7 Å. The structures reveal that clemizole binds inside the voltage sensor-like domain of each subunit. In contrast, HC-070 is wedged between adjacent subunits and replaces the glycerol group of a putative DAG molecule near the extracellular side. Moreover, we found mutations in the inhibitor binding pockets altered the potency of inhibitors. These structures suggest that both clemizole and HC-070 exert the inhibitory functions by stabilizing the ion channel in a non-conductive closed state. These results pave the way for further design and optimization of inhibitors targeting human TRPC5.


2020 ◽  
Author(s):  
Mohamed Fadlalla

<p>SARS CoV 2 has spread worldwide and caused a major outbreak of coronavirus disease 2019 (COVID-19). To date, no licensed drug or a vaccine is available against COVID19.</p><p>Starting from all of the resolved SARS CoV2 crystal structures, this study aims to find inhibitors for all of the SARS CoV2 proteins. To achieve this, I used PocketMatch to test the similarity of approved drugs binding sites against all of the binding sites found on SARS CoV 2 proteins. After that docking was used to confirm the results.</p><p>I found drugs that inhibit the main protease, Nsp12 and Nsp3. The discovered drugs are either in clinical trials (Sildenafil, Lopinavir, Ritonavir) or have in vitro antiviral activity (Nelfinavir, Indinavir, Amprenavir, depiqulinum , Gemcitabine, Raltitrexed, Aprepitant, montelukast, Ouabain, Raloxifene) whether against SARS CoV 2 or other viruses. In addition to this, further analysis of pockets revealed a steroidal pocket that might open the door to hypotheses on why the mortality of men is higher than women.</p><p>Many of the in silico repurposing studies test binding of the compound to the target using docking. The significance of this study adds to the similarity between the drug binding site and the target binding site. This takes into consideration the dynamic behaviour of the pocket after ligand binding.</p><div><br></div>


Biomolecules ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 82 ◽  
Author(s):  
Michelle Miller ◽  
Philip Thompson ◽  
Sandra Gabelli

Phosphatidylinositol 3-kinases (PI3Ks) are important therapeutic targets for the treatment of cancer, thrombosis, and inflammatory and immune diseases. The four highly homologous Class I isoforms, PI3Kα, PI3Kβ, PI3Kγ and PI3Kδ have unique, non-redundant physiological roles and as such, isoform selectivity has been a key consideration driving inhibitor design and development. In this review, we discuss the structural biology of PI3Ks and how our growing knowledge of structure has influenced the medicinal chemistry of PI3K inhibitors. We present an analysis of the available structure-selectivity-activity relationship data to highlight key insights into how the various regions of the PI3K binding site influence isoform selectivity. The picture that emerges is one that is far from simple and emphasizes the complex nature of protein-inhibitor binding, involving protein flexibility, energetics, water networks and interactions with non-conserved residues.


2020 ◽  
Author(s):  
Yuqin Lei ◽  
Yuling Li ◽  
Yuping Tan ◽  
Da Jia ◽  
Qingxiang Sun

AbstractCRM1 is an important drug target in diseases such as cancer and viral infection. Plumbagin and oridonin, the herbal ingredients with known anti-cancer activities, were reported to inhibit CRM1-mediated nuclear export. However, their modes of CRM1 inhibition are unclear. Here, a multi-mutant of yeast CRM1 was engineered to enable the crystallization of these two small molecules in CRM1’s NES-binding groove. Each structure showed three inhibitor-binding sites, among which two are conserved in humans. Besides the known binding site, another site also participated in oridonin and plumbagin’s CRM1 inhibition. While the plumbagin-bound NES groove resembled the NES-bound groove state, the oridonin-bound groove revealed for the first time a more open NES groove, which may potentially improve cargo-loading through a capture-and-tighten mechanism. Our work thus provides a tool for CRM1 inhibitor crystallization, new insights of CRM1-cargo interaction, and a structural basis for further development of these or other CRM1 inhibitors.


1971 ◽  
Vol 121 (4) ◽  
pp. 721-730 ◽  
Author(s):  
P. J. Winterburn ◽  
C. F. Phelps

1. The binding of substrates and effectors to glucosamine synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) was studied by using the ligand to alter the denaturation rate of the enzyme. The free enzyme bound fructose 6-phosphate, glucose 6-phosphate and UDP-N-acetylglucosamine, but not glutamine, AMP or UTP. Glucose 6-phosphate and AMP increased the binding of UDP-N-acetylglucosamine whereas UTP decreased the interaction between the enzyme and the feedback inhibitor. UDP-N-acetylglucosamine induced a glutamine-binding site on the enzyme. 2. Selective thermal or chemical denaturation revealed that the UDP-N-acetylglucosamine-binding site was not located at the catalytic site. The UTP site could not be distinguished from that for the nucleotide sugar. The AMP- and glucose 6-phosphate-binding sites were distinct from the catalytic and feedback-inhibitor-binding sites. 3. The specificity of the glutamine-binding site was investigated by using a series of potential analogues. 4. A model is proposed for the action of the effectors and the mechanism of the reaction discussed in kinetic and chemical terms.


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 983
Author(s):  
Haiyan Cai ◽  
Parvathy Sasikumar ◽  
Gemma Little ◽  
Dominique Bihan ◽  
Samir W. Hamaia ◽  
...  

HSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact binding sites of HSP47 on native collagens are not fully defined. To address this, we mapped the HSP47 binding sites on collagens through an ELISA binding assay using collagen toolkits, synthetic collagen peptides covering the entire amino acid sequences of collagen types II and III assembled in triple-helical conformation. Our results showed that HSP47 binds to only a few of the GXR motifs in collagen, with most of the HSP47 binding sites identified located near the N-terminal part of the triple-helical region. Molecular modelling and binding energy calculation indicated that residues flanking the key Arg in the collagen sequence also play an important role in defining the high-affinity HSP47 binding site of collagen. Based on this binding mode of HSP47 to collagen, virtual screening targeting both the Arg binding site and its neighboring area on the HSP47 surface, and a subsequent bioassay, we identified two novel compounds with blocking activity towards HSP47 binding of collagen. Overall, our study revealed the native HSP47 binding sites on collagen and provided novel information for the design of small-molecule inhibitors of HSP47.


Sign in / Sign up

Export Citation Format

Share Document