scholarly journals Improvement of muscle strength in a mouse model for congenital myopathy treated with HDAC and DNA methyltransferase inhibitors

2021 ◽  
Author(s):  
Alexis Ruiz ◽  
Sofia Benucci ◽  
Urs Duthaler ◽  
Christoph P Bachmann ◽  
Martina Franchini ◽  
...  

To date there are no therapies for patients with congenital myopathies, muscle disorders causing poor quality of life of affected individuals. In approximately 30% of the cases, patients with congenital myopathies carry either dominant or recessive mutations in the RYR1 gene; recessive RYR1 mutations are accompanied by reduction of RyR1 expression and content in skeletal muscles and are associated with fiber hypotrophy and muscle weakness. Importantly, muscles of patients with recessive RYR1 mutations exhibit increased content of class II histone de-acetylases and of DNA genomic methylation. We recently created a mouse model knocked-in for the p.Q1970fsX16+p.A4329D RyR1 mutations, which are isogenic to those carried by a severely affected child suffering from a recessive form of RyR1-related multi-mini core disease. The phenotype of the RyR1 mutant mice recapitulates many aspects of the clinical picture of patients carrying recessive RYR1 mutations. We treated the compound heterozygous mice with a combination of two drugs targeting DNA methylases and class II histone de-acetylases. Here we show that treatment of the mutant mice with drugs targeting epigenetic enzymes improves muscle strength, RyR1 protein content and muscle ultrastructure. This study provides proof of concept for the pharmacological treatment of patients with congenital myopathies linked to recessive RYR1 mutations.

Zygote ◽  
2021 ◽  
pp. 1-6
Author(s):  
Liliana Burlibaşa ◽  
Alina-Teodora Nicu ◽  
Carmen Domnariu

Summary The process of cytodifferentiation in spermatogenesis is governed by a unique genetic and molecular programme. In this context, accurate ‘tuning’ of the regulatory mechanisms involved in germ cells differentiation is required, as any error could have dramatic consequences on species survival and maintenance. To study the processes that govern the spatial–temporal expression of genes, as well as analyse transmission of epigenetic information to descendants, an integrated approach of genetics, biochemistry and cytology data is necessary. As information in the literature on interplay between DNA methylation and histone H3 lysine 4 trimethylation (H3K4me3) in the advanced stages of murine spermatogenesis is still scarce, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine, at the cytological level using immunocytochemistry methodology. Our results revealed a particular distribution of H3K4me3 during sperm cell differentiation and highlighted an important role for regulation of DNA methylation in controlling histone methylation and chromatin remodelling during spermatogenesis.


2020 ◽  
Vol 14 (1) ◽  
pp. 17
Author(s):  
K. Eurídice Juárez-Mercado ◽  
Fernando D. Prieto-Martínez ◽  
Norberto Sánchez-Cruz ◽  
Andrea Peña-Castillo ◽  
Diego Prada-Gracia ◽  
...  

Inhibitors of DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug discovery. They are also chemical tools to understand the biochemistry of epigenetic processes. Herein, we report five distinct inhibitors of DNMT1 characterized in enzymatic inhibition assays that did not show activity with DNMT3B. It was concluded that the dietary component theaflavin is an inhibitor of DNMT1. Two additional novel inhibitors of DNMT1 are the approved drugs glyburide and panobinostat. The DNMT1 enzymatic inhibitory activity of panobinostat, a known pan inhibitor of histone deacetylases, agrees with experimental reports of its ability to reduce DNMT1 activity in liver cancer cell lines. Molecular docking of the active compounds with DNMT1, and re-scoring with the recently developed extended connectivity interaction features approach, led to an excellent agreement between the experimental IC50 values and docking scores.


2014 ◽  
Vol 25 (2) ◽  
pp. 144-155 ◽  
Author(s):  
Ruhi Phaltane ◽  
Reinhard Haemmerle ◽  
Michael Rothe ◽  
Ute Modlich ◽  
Thomas Moritz

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Hiroko Wakimoto ◽  
Ronny Alcalai ◽  
Lei Song ◽  
Michael Arad ◽  
Christine E Seidman ◽  
...  

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmia syndrome caused by mutations in the ryanodine receptor (RyR2) or calsequestrin-2 (CASQ2) genes and characterized by exercise or emotional stress-induced sudden death. Beta-adrenergic blockers are only partially effective and other agents have not been widely tested. Recent studies have shown that CPVT is mediated by increased Ca 2+ leak through the RyR2 channel. Our aim was to determine whether agents that inhibit intracellular Ca 2+ leak can effectively prevent CPVT. Methods: The efficacy of intraperitoneal (IP) propranolol (1mcg/g), Mg 2+ (0.002mEq/g), verapamil (8 mcg/g) and diltiazem (8 mcg/g) were tested both in vivo and in vitro using CASQ2 mutant mouse CPVT model. In vivo studies included ambulatory ECG recordings at rest and following epinephrine stress (0.4 mcg/g IP) at baseline and after study drug administration. Experiments for each drug were performed on separate days to avoid confounding effects. In vitro studies included intracellular Ca 2+ transient analysis on isolated cardiomyocytes from mutant mice with and without epinephrine (5.5 μM). Results: All 4 drugs restored sinus rhythm and reduced the frequency of VT episodes induced by epinephrine in CASQ2 mutant mice. Only verapamil completely prevented epinephrine-induced VT in 87% of the mice (p<0.01). Cardiomyocyte studies in basal conditions revealed that Mg 2+ and verapamil inhibited sarcomere contraction and normalized the prolonged Ca 2+ reuptake period in CASQ2 mutants, but did not decrease baseline Ca 2+ peak height. Epinephrine-stressed mutant myocytes had increased diastolic Ca 2+ levels, lower Ca 2+ peak height and spontaneous SR Ca 2+ release events that were partially prevented by verapamil and Mg 2+ . Verapamil was more effective than Mg 2+ in reducing the frequency of spontaneous Ca 2+ releases induced by epinephrine. Conclusions: All 4 agents can inhibit ventricular arrhythmia in CPVT mouse model; however verapamil appears most effective in preventing arrhythmia in vivo and in modifying intracellular abnormal calcium handling. Calcium antagonists might have therapeutic value in CPVT and other RyR2-mediated arrhythmias and should be considered for human clinical studies.


Author(s):  
Nicola Simola ◽  
Micaela Morelli ◽  
Tooru Mizuno ◽  
Suzanne H. Mitchell ◽  
Harriet de Wit ◽  
...  

Author(s):  
Michael J. Grusby ◽  
Jay S. Markowitz ◽  
Terri M. Laufer ◽  
Richard Lee ◽  
Hugh Auchincloss ◽  
...  
Keyword(s):  
Class Ii ◽  

2019 ◽  
Vol 20 (16) ◽  
pp. 1151-1157 ◽  
Author(s):  
Jia Yu ◽  
Jacqueline Zayas ◽  
Bo Qin ◽  
Liewei Wang

Triple-negative breast cancer (TNBC) accounts for 15–20% of all invasive breast cancers and tends to have aggressive histological features and poor clinical outcomes. Unlike, estrogen receptor- or HER2-positive diseases, TNBC patients currently lack the US FDA-approved targeted therapies. DNA methylation is a critical mechanism of epigenetic modification. It is well known that aberrant DNA methylation contributes to the malignant transformation of cells by silencing critical tumor suppressor genes. DNA methyltransferase inhibitors reactivate silenced tumor suppressor genes and result in tumor growth arrest, with therapeutic effects observed in patients with hematologic malignancies. The antitumor effect of these DNA methyltransferase inhibitors has also been explored in solid tumors, especially in TNBC that currently lacks targeted therapies.


Leukemia ◽  
2019 ◽  
Vol 34 (3) ◽  
pp. 938-941 ◽  
Author(s):  
Priya Choudhry ◽  
Margarette C. Mariano ◽  
Huimin Geng ◽  
Thomas G. Martin ◽  
Jeffrey L. Wolf ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document