scholarly journals Altered brain criticality in Schizophrenia: New insights from MEG

2021 ◽  
Author(s):  
Golnoush Alamian ◽  
Tarek Lajnef ◽  
Annalisa Pascarella ◽  
Jean-Marc Lina ◽  
Laura Knight ◽  
...  

Schizophrenia has a complex etiology and symptomatology that is difficult to untangle. After decades of research, important advancements towards a central biomarker are still lacking. One of the missing pieces is a better understanding of how non-linear neural dynamics are altered in this patient population. In this study, the resting-state neuromagnetic signals of schizophrenia patients and healthy controls were analyzed in the framework of criticality. When biological systems like the brain are in a state of criticality, they are thought to be functioning at maximum efficiency (e.g., optimal communication and storage of information) and with maximum adaptability to incoming information. Here, we assessed the self-similarity and multifractality of resting-state brain signals recorded with magnetoencephalography in patients with schizophrenia patients and in matched controls. Our analysis showed a clear ascending, rostral to caudal gradient of self-similarity values in healthy controls, and an opposite gradient for multifractality (descending values, rostral to caudal). Schizophrenia patients had similar, although attenuated, gradients of self-similarity and multifractality values. Statistical tests showed that patients had higher values of self-similarity than controls in fronto-temporal regions, indicative of more regularity and memory in the signal. In contrast, patients had less multifractality than controls in the parietal and occipital regions, indicative of less diverse singularities and reduced variability in the signal. In addition, supervised machine-learning, based on logistic regression, successfully discriminated the two groups using measures of self-similarity and multifractality as features. Our results provide new insights into the baseline cognitive functioning of schizophrenia patients by identifying key alterations of criticality properties in their resting-state brain data.

2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Lan Yang ◽  
Jing Wei ◽  
Ying Li ◽  
Bin Wang ◽  
Hao Guo ◽  
...  

In recent years, interest has been growing in dynamic characteristic of brain signals from resting-state functional magnetic resonance imaging (rs-fMRI). Synchrony and metastability, as neurodynamic indexes, are considered as one of methods for analyzing dynamic characteristics. Although much research has studied the analysis of neurodynamic indices, few have investigated its reliability. In this paper, the datasets from the Human Connectome Project have been used to explore the test–retest reliabilities of synchrony and metastability from multiple angles through intra-class correlation (ICC). The results showed that both of these indexes had fair test–retest reliability, but they are strongly affected by the field strength, the spatial resolution, and scanning interval, less affected by the temporal resolution. Denoising processing can help improve their ICC values. In addition, the reliability of neurodynamic indexes was affected by the node definition strategy, but these effects were not apparent. In particular, by comparing the test–retest reliability of different resting-state networks, we found that synchrony of different networks was basically stable, but the metastability varied considerably. Among these, DMN and LIM had a relatively higher test–retest reliability of metastability than other networks. This paper provides a methodological reference for exploring the brain dynamic neural activity by using synchrony and metastability in fMRI signals.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Shujuan Wang ◽  
Ping Song ◽  
Rong Ma ◽  
Yanzhong Wang ◽  
Bin Yu ◽  
...  

Chronic spontaneous urticaria (CSU) is a common skin disease which symptom is local pruritus and pain. In medicine, researchers take a certain point that the brain is the control center of CSU, but in previous experiments, the researchers found that cerebellum also had a certain effect on CSU. In order to find out the influence of CSU in the brain and cerebellum, we collected the brain resting-state fMRI data from 40 healthy controls and 32 CSU patients and used DPABI to preprocess. We calculated the entropy values of five scales by using multiscale entropy (MSE) and the average entropy values of two groups’ BOLD signals; 15 regions with significant differences were found which not only had a more detailed impact in the brain but also had an impact in the cerebellum, such as precentral gyrus, lenticular putamen, and vermis of cerebellum. In addition, we found that compared with the healthy controls, the entropy values of CSU patients showed two trends which need further study. The advantage of our experiment is that the multiscale entropy value is used to get more influence regions of CSU in the brain and cerebellum. The results of this paper may provide some help for the pathological study of CSU.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kefan Wang ◽  
Xiaonan Zhang ◽  
Chengru Song ◽  
Keran Ma ◽  
Man Bai ◽  
...  

It is well established that epilepsy is characterized by the destruction of the information capacity of brain network and the interference with information processing in regions outside the epileptogenic focus. However, the potential mechanism remains poorly understood. In the current study, we applied a recently proposed approach on the basis of resting-state fMRI data to measure altered local neural dynamics in mesial temporal lobe epilepsy (mTLE), which represents how long neural information is stored in a local brain area and reflect an ability of information integration. Using resting-state-fMRI data recorded from 36 subjects with mTLE and 36 healthy controls, we calculated the intrinsic neural timescales (INT) of neural signals by summing the positive magnitude of the autocorrelation of the resting-state brain activity. Compared to healthy controls, the INT values were significantly lower in patients in the right orbitofrontal cortices, right insula, and right posterior lobe of cerebellum. Whereas, we observed no statistically significant changes between patients with long- and short-term epilepsy duration or between left-mTLE and right-mTLE. Our study provides distinct insight into the brain abnormalities of mTLE from the perspective of the dynamics of the brain activity, highlighting the significant role of intrinsic timescale in understanding neurophysiological mechanisms. And we postulate that altered intrinsic timescales of neural signals in specific cortical brain areas may be the neurodynamic basis of cognitive impairment and emotional comorbidities in mTLE patients.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Elzbieta Olejarczyk ◽  
Jean Gotman ◽  
Birgit Frauscher

AbstractAs the brain is a complex system with occurrence of self-similarity at different levels, a dedicated analysis of the complexity of brain signals is of interest to elucidate the functional role of various brain regions across the various stages of vigilance. We exploited intracranial electroencephalogram data from 38 cortical regions using the Higuchi fractal dimension (HFD) as measure to assess brain complexity, on a dataset of 1772 electrode locations. HFD values depended on sleep stage and topography. HFD increased with higher levels of vigilance, being highest during wakefulness in the frontal lobe. HFD did not change from wake to stage N2 in temporo-occipital regions. The transverse temporal gyrus was the only area in which the HFD did not differ between any two vigilance stages. Interestingly, HFD of wakefulness and stage R were different mainly in the precentral gyrus, possibly reflecting motor inhibition in stage R. The fusiform and parahippocampal gyri were the only areas showing no difference between wakefulness and N2. Stages R and N2 were similar only for the postcentral gyrus. Topographical analysis of brain complexity revealed that sleep stages are clearly differentiated in fronto-central brain regions, but that temporo-occipital regions sleep differently.


Neurosurgery ◽  
2017 ◽  
Vol 83 (5) ◽  
pp. 905-914 ◽  
Author(s):  
Kishore Kislay ◽  
Bhagavatula Indira Devi ◽  
Dhananjaya Ishwar Bhat ◽  
Dhaval Prem Shukla ◽  
Arun Kumar Gupta ◽  
...  

Abstract BACKGROUND The response of the brain to obstetric brachial plexus palsy (OBPP) is not clearly understood. We propose that even a peripheral insult at the developmental stage may result in changes in the volume of white matter of the brain, which we studied using corpus callosum volumetry and resting-state functional magnetic resonance imaging (rsfMRI) of sensorimotor network. OBJECTIVE To study the central neural effects in OBPP. METHODS We performed an MRI study on a cohort of 14 children who had OBPP and 14 healthy controls. The mean age of the test subjects was 10.07 ± 1.22 yr (95% confidence interval). Corpus callosum volumetry was compared with that of age-matched healthy subjects. Hofer and Frahm segmentation was used. Resting-state fMRI data were analyzed using the FSL software (FMRIB Software Library v5.0, Oxford, United Kingdom), and group analysis of the sensorimotor network was performed. RESULTS Statistical analysis of corpus callosum volume revealed significant differences between the OBPP cohort and healthy controls, especially in the motor association areas. Independent t-test revealed statistically significant volume loss in segments I (prefrontal), II (premotor), and IV (primary sensory area). rsfMRI of sensorimotor network showed decreased activation in the test hemisphere (the side contralateral to the injured brachial plexus) and also decreased activation in the ipsilateral hemisphere, when compared with healthy controls. CONCLUSION OBPP occurs in an immature brain and causes central cortical changes. There is secondary corpus callosum atrophy which may be due to retrograde transneuronal degeneration. This in turn may result in disruption of interhemispheric coactivation and consequent reduction in activation of sensorimotor network even in the ipsilateral hemisphere.


Author(s):  
Selma Büyükgöze

Brain Computer Interface consists of hardware and software that convert brain signals into action. It changes the nerves, muscles, and movements they produce with electro-physiological signs. The BCI cannot read the brain and decipher the thought in general. The BCI can only identify and classify specific patterns of activity in ongoing brain signals associated with specific tasks or events. EEG is the most commonly used non-invasive BCI method as it can be obtained easily compared to other methods. In this study; It will be given how EEG signals are obtained from the scalp, with which waves these frequencies are named and in which brain states these waves occur. 10-20 electrode placement plan for EEG to be placed on the scalp will be shown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rossana Mastrandrea ◽  
Fabrizio Piras ◽  
Andrea Gabrielli ◽  
Nerisa Banaj ◽  
Guido Caldarelli ◽  
...  

AbstractNetwork neuroscience shed some light on the functional and structural modifications occurring to the brain associated with the phenomenology of schizophrenia. In particular, resting-state functional networks have helped our understanding of the illness by highlighting the global and local alterations within the cerebral organization. We investigated the robustness of the brain functional architecture in 44 medicated schizophrenic patients and 40 healthy comparators through an advanced network analysis of resting-state functional magnetic resonance imaging data. The networks in patients showed more resistance to disconnection than in healthy controls, with an evident discrepancy between the two groups in the node degree distribution computed along a percolation process. Despite a substantial similarity of the basal functional organization between the two groups, the expected hierarchy of healthy brains' modular organization is crumbled in schizophrenia, showing a peculiar arrangement of the functional connections, characterized by several topologically equivalent backbones. Thus, the manifold nature of the functional organization’s basal scheme, together with its altered hierarchical modularity, may be crucial in the pathogenesis of schizophrenia. This result fits the disconnection hypothesis that describes schizophrenia as a brain disorder characterized by an abnormal functional integration among brain regions.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 286
Author(s):  
Soheil Keshmiri

Recent decades have witnessed a substantial progress in the utilization of brain activity for the identification of stress digital markers. In particular, the success of entropic measures for this purpose is very appealing, considering (1) their suitability for capturing both linear and non-linear characteristics of brain activity recordings and (2) their direct association with the brain signal variability. These findings rely on external stimuli to induce the brain stress response. On the other hand, research suggests that the use of different types of experimentally induced psychological and physical stressors could potentially yield differential impacts on the brain response to stress and therefore should be dissociated from more general patterns. The present study takes a step toward addressing this issue by introducing conditional entropy (CE) as a potential electroencephalography (EEG)-based resting-state digital marker of stress. For this purpose, we use the resting-state multi-channel EEG recordings of 20 individuals whose responses to stress-related questionnaires show significantly higher and lower level of stress. Through the application of representational similarity analysis (RSA) and K-nearest-neighbor (KNN) classification, we verify the potential that the use of CE can offer to the solution concept of finding an effective digital marker for stress.


2019 ◽  
Vol 9 (1) ◽  
pp. 11 ◽  
Author(s):  
Ángel Romero-Martínez ◽  
Macarena González ◽  
Marisol Lila ◽  
Enrique Gracia ◽  
Luis Martí-Bonmatí ◽  
...  

Introduction: There is growing scientific interest in understanding the biological mechanisms affecting and/or underlying violent behaviors in order to develop effective treatment and prevention programs. In recent years, neuroscientific research has tried to demonstrate whether the intrinsic activity within the brain at rest in the absence of any external stimulation (resting-state functional connectivity; RSFC) could be employed as a reliable marker for several cognitive abilities and personality traits that are important in behavior regulation, particularly, proneness to violence. Aims: This review aims to highlight the association between the RSFC among specific brain structures and the predisposition to experiencing anger and/or responding to stressful and distressing situations with anger in several populations. Methods: The scientific literature was reviewed following the PRISMA quality criteria for reviews, using the following digital databases: PubMed, PsycINFO, Psicodoc, and Dialnet. Results: The identification of 181 abstracts and retrieval of 34 full texts led to the inclusion of 17 papers. The results described in our study offer a better understanding of the brain networks that might explain the tendency to experience anger. The majority of the studies highlighted that diminished RSFC between the prefrontal cortex and the amygdala might make people prone to reactive violence, but that it is also necessary to contemplate additional cortical (i.e. insula, gyrus [angular, supramarginal, temporal, fusiform, superior, and middle frontal], anterior and posterior cingulated cortex) and subcortical brain structures (i.e. hippocampus, cerebellum, ventral striatum, and nucleus centralis superior) in order to explain a phenomenon as complex as violence. Moreover, we also described the neural pathways that might underlie proactive violence and feelings of revenge, highlighting the RSFC between the OFC, ventral striatal, angular gyrus, mid-occipital cortex, and cerebellum. Conclusions. The results from this synthesis and critical analysis of RSFC findings in several populations offer guidelines for future research and for developing a more accurate model of proneness to violence, in order to create effective treatment and prevention programs.


Sign in / Sign up

Export Citation Format

Share Document