scholarly journals The role of four cholesterol-recognition motifs localized between amino acid residues 400-550 in regulating translocation and lytic activity of Adenylate Cyclase Toxin

2021 ◽  
Author(s):  
Jone Amuategi ◽  
Rocio Alonso ◽  
Helena Ostolaza

Adenylate Cyclase Toxin (ACT or CyaA) is an important virulence factor secreted by Bordetella pertussis, the bacterium causative of whooping cough, playing an essential role in the establishment of infection in the respiratory tract. ACT is a pore-forming cytolysin belonging to the RTX (Repeats in ToXin) family of leukotoxins, capable of permeabilizing several cell types and pure lipid vesicles. Besides, the toxin delivers its N-terminal adenylate cyclase domain into the target cytosol, where catalyzes the conversion of ATP into cAMP, which affects cell signalling. In this study we have made two major observations. First, we show that ACT binds free cholesterol, and identify in its sequence 38 potential cholesterol-recognition motifs. Second, we reveal that four of those motifs are real, functional cholesterol-binding sites. Mutations of the central phenylalanine residues in said motifs have an important impact on the ACT lytic and translocation activities, suggesting their direct intervention in cholesterol recognition and toxin functionality. From our data a likely transmembrane topology can be inferred for the ACT helices constituting the translocation and the hydrophobic regions. From this topology a simple and plausible mechanism emerges by which ACT could translocate its AC domain into target cells, challenging previous views in the field. Blocking the ACT-cholesterol interactions might thus be an effective approach for inhibiting ACT toxicity on cells, and this could help in mitigating the severity of pertussis disease in humans.

2013 ◽  
Vol 81 (5) ◽  
pp. 1390-1398 ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Jason M. Warfel ◽  
Christopher D. Paddock ◽  
Tara F. Jones ◽  
...  

ABSTRACTWhooping cough results from infection of the respiratory tract withBordetella pertussis, and the secreted adenylate cyclase toxin (ACT) is essential for the bacterium to establish infection. Despite extensive study of the mechanism of ACT cytotoxicity and its effects over a range of concentrationsin vitro, ACT has not been observed or quantifiedin vivo, and thus the concentration of ACT at the site of infection is unknown. The recently developed baboon model of infection mimics the prolonged cough and transmissibility of pertussis, and we hypothesized that measurement of ACT in nasopharyngeal washes (NPW) from baboons, combined with human andin vitrodata, would provide an estimate of the ACT concentration in the airway during infection. NPW contained up to ∼108CFU/mlB. pertussisand 1 to 5 ng/ml ACT at the peak of infection. Nasal aspirate specimens from two human infants with pertussis contained bacterial concentrations similar to those in the baboons, with 12 to 20 ng/ml ACT. When ∼108CFU/ml of a laboratory strain ofB. pertussiswas culturedin vitro, ACT production was detected in 60 min and reached a plateau of ∼60 ng/ml in 6 h. Furthermore, when bacteria were brought into close proximity to target cells by centrifugation, intoxication was increased 4-fold. Collectively, these data suggest that at the bacterium-target cell interface during infection of the respiratory tract, the concentration of ACT can exceed 100 ng/ml, providing a reference point for future studies of ACT and pertussis pathogenesis.


2011 ◽  
Vol 80 (2) ◽  
pp. 850-859 ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Annabelle R. Mangan ◽  
Gina M. Donato ◽  
Erik L. Hewlett

ABSTRACTThe adenylate cyclase toxin (ACT) ofBordetella pertussisdoes not require a receptor to generate intracellular cyclic AMP (cAMP) in a broad range of cell types. To intoxicate cells, ACT binds to the cell surface, translocates its catalytic domain across the cell membrane, and converts intracellular ATP to cAMP. In cells that express the integrin CD11b/CD18 (CR3), ACT is more potent than in CR3-negative cells. We find, however, that the maximum levels of cAMP accumulation inside CR3-positive and -negative cells are comparable. To better understand how CR3 affects the generation of cAMP, we used Chinese hamster ovary and K562 cells transfected to express CR3 and examined the steps in intoxication in the presence and absence of the integrin. The binding of ACT to cells is greater in CR3-expressing cells at all concentrations of ACT, and translocation of the catalytic domain is enhanced by CR3 expression, with ∼80% of ACT molecules translocating their catalytic domain in CR3-positive cells but only 25% in CR3-negative cells. Once in the cytosol, the unregulated catalytic domain converts ATP to cAMP, and at ACT concentrations >1,000 ng/ml, the intracellular ATP concentration is <5% of that in untreated cells, regardless of CR3 expression. This depletion of ATP prevents further production of cAMP, despite the CR3-mediated enhancement of binding and translocation. In addition to characterizing the effects of CR3 on the actions of ACT, these data show that ATP consumption is yet another concentration-dependent activity of ACT that must be considered when studying how ACT affects target cells.


2004 ◽  
Vol 186 (12) ◽  
pp. 3760-3765 ◽  
Author(s):  
César Martín ◽  
M.-Asunción Requero ◽  
Jiri Masin ◽  
Ivo Konopasek ◽  
Félix M. Goñi ◽  
...  

ABSTRACT Adenylate cyclase toxin (ACT) is secreted by Bordetella pertussis, the bacterium causing whooping cough. ACT is a member of the RTX (repeats in toxin) family of toxins, and like other members in the family, it may bind cell membranes and cause disruption of the permeability barrier, leading to efflux of cell contents. The present paper summarizes studies performed on cell and model membranes with the aim of understanding the mechanism of toxin insertion and membrane restructuring leading to release of contents. ACT does not necessarily require a protein receptor to bind the membrane bilayer, and this may explain its broad range of host cell types. In fact, red blood cells and liposomes (large unilamellar vesicles) display similar sensitivities to ACT. A varying liposomal bilayer composition leads to significant changes in ACT-induced membrane lysis, measured as efflux of fluorescent vesicle contents. Phosphatidylethanolamine (PE), a lipid that favors formation of nonlamellar (inverted hexagonal) phases, stimulated ACT-promoted efflux. Conversely, lysophosphatidylcholine, a micelle-forming lipid that opposes the formation of inverted nonlamellar phases, inhibited ACT-induced efflux in a dose-dependent manner and neutralized the stimulatory effect of PE. These results strongly suggest that ACT-induced efflux is mediated by transient inverted nonlamellar lipid structures. Cholesterol, a lipid that favors inverted nonlamellar phase formation and also increases the static order of phospholipid hydrocarbon chains, among other effects, also enhanced ACT-induced liposomal efflux. Moreover, the use of a recently developed fluorescence assay technique allowed the detection of trans-bilayer (flip-flop) lipid motion simultaneous with efflux. Lipid flip-flop further confirms the formation of transient nonlamellar lipid structures as a result of ACT insertion in bilayers.


Toxins ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 302 ◽  
Author(s):  
Alexandre Chenal ◽  
Daniel Ladant

The adenylate cyclase toxin (CyaA) is one of the major virulence factors of Bordetella pertussis, the causative agent of whooping cough. CyaA is able to invade eukaryotic cells where, upon activation by endogenous calmodulin, it synthesizes massive amounts of cAMP that alters cellular physiology. The CyaA toxin is a 1706 residues-long bifunctional protein: the catalytic domain is located in the 400 amino-proximal residues, whereas the carboxy-terminal 1306 residues are implicated in toxin binding to the cellular receptor, the αMβ2 (CD11b/CD18) integrin, and subsequently in the translocation of the catalytic domain across the cytoplasmic membrane of the target cells. Indeed, this protein is endowed with the unique capability of delivering its N-terminal catalytic domain directly across the plasma membrane of eukaryotic target cells. These properties have been exploited to engineer the CyaA toxin as a potent non-replicating vector able to deliver antigens into antigen presenting cells and elicit specific cell-mediated immune responses. Antigens of interest can be inserted into the CyaA protein to yield recombinant molecules that are targeted in vivo to dendritic cells, where the antigens are processed and presented by the major class I and class II histocompatibility complexes (MHC-I and II). CyaA turned out to be a remarkably effective and versatile vaccine vector capable of inducing all the components of the immune response (T-CD4, T-CD8, and antibody). In this chapter, we summarize the basic knowledge on the adenylate cyclase toxin and then describe the application of CyaA in vaccinology, including some recent results of clinical trials of immunotherapy using a recombinant CyaA vaccine.


Toxins ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 111 ◽  
Author(s):  
Alexis Voegele ◽  
Mirko Sadi ◽  
Dorothée Raoux-Barbot ◽  
Thibaut Douché ◽  
Mariette Matondo ◽  
...  

The adenylate cyclase (CyaA) toxin produced in Bordetella pertussis is the causative agent of whooping cough. CyaA exhibits the remarkable capacity to translocate its N-terminal adenyl cyclase domain (ACD) directly across the plasma membrane into the cytosol of eukaryotic cells. Once translocated, calmodulin binds and activates ACD, leading to a burst of cAMP that intoxicates the target cell. Previously, Gonzalez-Bullon et al. reported that CyaA exhibits a phospholipase A activity that could destabilize the membrane to facilitate ACD membrane translocation. However, Bumba and collaborators lately reported that they could not replicate these results. To clarify this controversy, we assayed the putative PLA activity of two CyaA samples purified in two different laboratories by using two distinct fluorescent probes reporting either PLA2 or both PLA1 and PLA2 activities, as well as in various experimental conditions (i.e., neutral or negatively charged membranes in different buffers.) However, we could not detect any PLA activity in these CyaA batches. Thus, our data independently confirm that CyaA does not possess any PLA activity.


2017 ◽  
Vol 114 (33) ◽  
pp. E6784-E6793 ◽  
Author(s):  
David González-Bullón ◽  
Kepa B. Uribe ◽  
César Martín ◽  
Helena Ostolaza

Adenylate cyclase toxin (ACT or CyaA) plays a crucial role in respiratory tract colonization and virulence of the whooping cough causative bacteriumBordetella pertussis. Secreted as soluble protein, it targets myeloid cells expressing the CD11b/CD18 integrin and on delivery of its N-terminal adenylate cyclase catalytic domain (AC domain) into the cytosol, generates uncontrolled toxic levels of cAMP that ablates bactericidal capacities of phagocytes. Our study deciphers the fundamentals of the heretofore poorly understood molecular mechanism by which the ACT enzyme domain directly crosses the host cell membrane. By combining molecular biology, biochemistry, and biophysics techniques, we discover that ACT has intrinsic phospholipase A (PLA) activity, and that such activity determines AC translocation. Moreover, we show that elimination of the ACT–PLA activity abrogates ACT toxicity in macrophages, particularly at toxin concentrations close to biological reality of bacterial infection. Our data support a molecular mechanism in which in situ generation of nonlamellar lysophospholipids by ACT–PLA activity into the cell membrane would form, likely in combination with membrane-interacting ACT segments, a proteolipidic toroidal pore through which AC domain transfer could directly take place. Regulation of ACT–PLA activity thus emerges as novel target for therapeutic control of the disease.


2017 ◽  
Vol 85 (6) ◽  
Author(s):  
Laura A. Gonyar ◽  
Mary C. Gray ◽  
Gregory J. Christianson ◽  
Borna Mehrad ◽  
Erik L. Hewlett

ABSTRACT Pertussis (whooping cough), caused by Bordetella pertussis, is resurging in the United States and worldwide. Adenylate cyclase toxin (ACT) is a critical factor in establishing infection with B. pertussis and acts by specifically inhibiting the response of myeloid leukocytes to the pathogen. We report here that serum components, as discovered during growth in fetal bovine serum (FBS), elicit a robust increase in the amount of ACT, and ≥90% of this ACT is localized to the supernatant, unlike growth without FBS, in which ≥90% is associated with the bacterium. We have found that albumin, in the presence of physiological concentrations of calcium, acts specifically to enhance the amount of ACT and its localization to the supernatant. Respiratory secretions, which contain albumin, promote an increase in amount and localization of active ACT that is comparable to that elicited by serum and albumin. The response to albumin is not mediated through regulation of ACT at the transcriptional level or activation of the Bvg two-component system. As further illustration of the specificity of this phenomenon, serum collected from mice that lack albumin does not stimulate an increase in ACT. These data, demonstrating that albumin and calcium act synergistically in the host environment to increase production and release of ACT, strongly suggest that this phenomenon reflects a novel host-pathogen interaction that is central to infection with B. pertussis and other Bordetella species.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Radim Osicka ◽  
Adriana Osickova ◽  
Shakir Hasan ◽  
Ladislav Bumba ◽  
Jiri Cerny ◽  
...  

Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis.


2020 ◽  
Vol 295 (28) ◽  
pp. 9349-9365
Author(s):  
Jiri Masin ◽  
Adriana Osickova ◽  
David Jurnecka ◽  
Nela Klimova ◽  
Humaira Khaliq ◽  
...  

The Bordetella adenylate cyclase toxin-hemolysin (CyaA) and the α-hemolysin (HlyA) of Escherichia coli belong to the family of cytolytic pore-forming Repeats in ToXin (RTX) cytotoxins. HlyA preferentially binds the αLβ2 integrin LFA-1 (CD11a/CD18) of leukocytes and can promiscuously bind and also permeabilize many other cells. CyaA bears an N-terminal adenylyl cyclase (AC) domain linked to a pore-forming RTX cytolysin (Hly) moiety, binds the complement receptor 3 (CR3, αMβ2, CD11b/CD18, or Mac-1) of myeloid phagocytes, penetrates their plasma membrane, and delivers the AC enzyme into the cytosol. We constructed a set of CyaA/HlyA chimeras and show that the CyaC-acylated segment and the CR3-binding RTX domain of CyaA can be functionally replaced by the HlyC-acylated segment and the much shorter RTX domain of HlyA. Instead of binding CR3, a CyaA1-710/HlyA411-1024 chimera bound the LFA-1 receptor and effectively delivered AC into Jurkat T cells. At high chimera concentrations (25 nm), the interaction with LFA-1 was not required for CyaA1-710/HlyA411-1024 binding to CHO cells. However, interaction with the LFA-1 receptor strongly enhanced the specific capacity of the bound CyaA1-710/HlyA411-1024 chimera to penetrate cells and deliver the AC enzyme into their cytosol. Hence, interaction of the acylated segment and/or the RTX domain of HlyA with LFA-1 promoted a productive membrane interaction of the chimera. These results help delimit residues 400–710 of CyaA as an “AC translocon” sufficient for translocation of the AC polypeptide across the plasma membrane of target cells.


2014 ◽  
Vol 82 (12) ◽  
pp. 5256-5269 ◽  
Author(s):  
Joshua C. Eby ◽  
Mary C. Gray ◽  
Erik L. Hewlett

ABSTRACTThe adenylate cyclase toxin (ACT) ofBordetella pertussisintoxicates target cells by generating supraphysiologic levels of intracellular cyclic AMP (cAMP). Since ACT kills macrophages rapidly and potently, we asked whether ACT would also kill neutrophils. In fact, ACT prolongs the neutrophil life span by inhibiting constitutive apoptosis and preventing apoptosis induced by exposure to liveB. pertussis. Imaging ofB. pertussis-exposed neutrophils revealed thatB. pertussislacking ACT induces formation of neutrophil extracellular traps (NETs), whereas wild-typeB. pertussisdoes not, suggesting that ACT suppresses NET formation. Indeed, ACT inhibits formation of NETs by generating cAMP and consequently inhibiting the oxidative burst. Convalescent-phase serum from humans following clinical pertussis blocks the ACT-mediated suppression of NET formation. These studies provide novel insight into the phagocyte impotence caused by ACT, which not only impairs neutrophil function but also inhibits death of neutrophils by apoptosis and NETosis.


Sign in / Sign up

Export Citation Format

Share Document