scholarly journals COP1 promotes seed germination by destabilizing RGA-LIKE2 (RGL2) in Arabidopsis

2021 ◽  
Author(s):  
Byoung-Doo Lee ◽  
Yehyun Yim ◽  
Esther Cañibano ◽  
Suk-Hwan Kim ◽  
Marta García-León ◽  
...  

AbstractUnder favorable moisture, temperature and light conditions, gibberellin (GA) biosynthesis is induced and triggers seed germination. A major mechanism by which GA promotes seed germination is by promoting the degradation of the DELLA protein RGL2, a major repressor of germination in Arabidopsis seeds. Analysis of seed germination phenotypes of constitutively photomorphogenic 1 (cop1) mutants and complemented COP1-OX/cop1-4 lines in response to GA and paclobutrazol (PAC) suggested a positive role for COP1 in seed germination and a relation with GA signaling. cop1-4 mutant seeds showed PAC hypersensitivity, but transformation with a COP1 overexpression construct rendered them PAC insensitive, with a phenotype similar to that of rgl2 mutant (rgl2-SK54) seeds. Furthermore, cop1-4 rgl2-SK54 double mutants showed a PAC-insensitive germination phenotype like that of rgl2-SK54, identifying COP1 as an upstream negative regulator of RGL2. COP1 interacts directly with RGL2 and in vivo this interaction is strongly enhanced by SPA1. COP1 directly ubiquitinates RGL2 to promote its degradation. Moreover, GA stabilizes COP1 with consequent RGL2 destabilization. By uncovering this COP1-RGL2 regulatory module, we reveal a novel mechanism whereby COP1 positively regulates seed germination and controls the expression of germination-promoting genes.

2001 ◽  
Vol 21 (8) ◽  
pp. 2736-2742 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Frank C. Holstege ◽  
Richard A. Young ◽  
Kevin Struhl

ABSTRACT NC2 (Dr1-Drap1 or Bur6-Ydr1) has been characterized in vitro as a general negative regulator of RNA polymerase II (Pol II) transcription that interacts with TATA-binding protein (TBP) and inhibits its function. Here, we show that NC2 associates with promoters in vivo in a manner that correlates with transcriptional activity and with occupancy by basal transcription factors. NC2 rapidly associates with promoters in response to transcriptional activation, and it remains associated under conditions in which transcription is blocked after assembly of the Pol II preinitiation complex. NC2 positively and negatively affects approximately 17% of Saccharomyces cerevisiaegenes in a pattern that resembles the response to general environmental stress. Relative to TBP, NC2 occupancy is high at promoters where NC2 is positively required for normal levels of transcription. Thus, NC2 is associated with the Pol II preinitiation complex, and it can play a direct and positive role at certain promoters in vivo.


2018 ◽  
Vol 115 (33) ◽  
pp. 8442-8447 ◽  
Author(s):  
Fabián E. Vaistij ◽  
Thiago Barros-Galvão ◽  
Adama F. Cole ◽  
Alison D. Gilday ◽  
Zhesi He ◽  
...  

Seed germination in many plant species is triggered by sunlight, which is rich in the red (R) wavelength and repressed by under-the-canopy light rich in far red (FR). R:FR ratios are sensed by phytochromes to regulate levels of gibberellins (GAs) and abscisic acid (ABA), which induce and inhibit germination respectively. In this study we have discovered that, under FR light conditions, germination is repressed by MOTHER-OF-FT-AND-TFL1 (MFT) through the regulation of the ABA and GA signaling pathways. We also show that MFT gene expression is tightly regulated by light quality. Previous work has shown that under FR light conditions the transcription factor PHYOCHROME-INTERACTING-FACTOR1 (PIF1) accumulates and promotes expression of SOMNUS (SOM) that, in turn, leads to increased ABA and decreased GA levels. PIF1 also promotes expression of genes encoding ABA-INSENSITIVE5 (ABI5) and DELLA growth-repressor proteins, which act in the ABA and GA signaling pathways, respectively. Here we show that MFT gene expression is promoted by FR light through the PIF1/SOM/ABI5/DELLA pathway and is repressed by R light via the transcription factor SPATULA (SPT). Consistent with this, we also show that SPT gene expression is repressed under FR light in a PIF1-dependent manner. Furthermore, transcriptomic analyses presented in this study indicate that MFT exerts its function by promoting expression of known ABA-induced genes and repressing cell wall expansion-related genes.


2020 ◽  
Vol 71 (12) ◽  
pp. 3543-3559
Author(s):  
Tao Yang ◽  
Yan Sun ◽  
Yongli Wang ◽  
Lina Zhou ◽  
Mengya Chen ◽  
...  

Abstract Flowering is a dynamic and synchronized process, the timing of which is finely tuned by various environmental signals. A T-DNA insertion mutant in Arabidopsis HEAT SHOCK PROTEIN-RELATED (AtHSPR) exhibited late-flowering phenotypes under both long-day (LD) and short-day (SD) conditions compared to the wild-type, while over-expression of AtHSPR promoted flowering. Exogenous application of gibberellin (GA) partially rescued the late-flowering mutant phenotype under both LD and SD conditions, suggesting that AtHSPR is involved in GA biosynthesis and/or the GA signaling that promotes flowering. Under SD or low-light conditions, the Athspr mutant exhibited late flowering together with reduced pollen viability and seed set, defective phenotypes that were partially rescued by GA treatment. qRT-PCR assays confirmed that GA biosynthetic genes were down-regulated, that GA catabolic genes were up-regulated, and that the levels of bioactive GA and its intermediates were decreased in Athspr under both SD and low-light/LD, further suggesting that AtHSPR could be involved in the GA pathway under SD and low-light conditions. Furthermore, AtHSPR interacted in vitro with OFP1 and KNAT5, which are transcriptional repressors of GA20ox1 in GA biosynthesis. Taken together, our findings demonstrate that AtHSPR plays a positive role in GA- and light intensity-mediated regulation of flowering and seed set.


2007 ◽  
Vol 2 (S 1) ◽  
Author(s):  
A Foryst-Ludwig ◽  
M Clemenz ◽  
S Hohmann ◽  
C Sprang ◽  
N Frost ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mary Elizabeth Mathyer ◽  
Erin A. Brettmann ◽  
Alina D. Schmidt ◽  
Zane A. Goodwin ◽  
Inez Y. Oh ◽  
...  

AbstractThe genetic modules that contribute to human evolution are poorly understood. Here we investigate positive selection in the Epidermal Differentiation Complex locus for skin barrier adaptation in diverse HapMap human populations (CEU, JPT/CHB, and YRI). Using Composite of Multiple Signals and iSAFE, we identify selective sweeps for LCE1A-SMCP and involucrin (IVL) haplotypes associated with human migration out-of-Africa, reaching near fixation in European populations. CEU-IVL is associated with increased IVL expression and a known epidermis-specific enhancer. CRISPR/Cas9 deletion of the orthologous mouse enhancer in vivo reveals a functional requirement for the enhancer to regulate Ivl expression in cis. Reporter assays confirm increased regulatory and additive enhancer effects of CEU-specific polymorphisms identified at predicted IRF1 and NFIC binding sites in the IVL enhancer (rs4845327) and its promoter (rs1854779). Together, our results identify a selective sweep for a cis regulatory module for CEU-IVL, highlighting human skin barrier evolution for increased IVL expression out-of-Africa.


2005 ◽  
Vol 25 (2) ◽  
pp. 819-829 ◽  
Author(s):  
Sandra Galic ◽  
Christine Hauser ◽  
Barbara B. Kahn ◽  
Fawaz G. Haj ◽  
Benjamin G. Neel ◽  
...  

ABSTRACT The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.


2001 ◽  
Vol 183 (15) ◽  
pp. 4405-4412 ◽  
Author(s):  
Rojana Sukchawalit ◽  
Suvit Loprasert ◽  
Sopapan Atichartpongkul ◽  
Skorn Mongkolsuk

ABSTRACT Analysis of the sequence immediate upstream of ohrrevealed an open reading frame, designated ohrR, with the potential to encode a 17-kDa peptide with moderate amino acid sequence homology to the MarR family of negative regulators of gene expression. ohrR was transcribed as bicistronic mRNA with ohr, while ohr mRNA was found to be 95% monocistronic and 5% bicistronic with ohrR. Expression of both genes was induced by tert-butyl hydroperoxide (tBOOH) treatment. High-level expression ofohrR negatively regulated ohr expression. This repression could be overcome by tBOOH treatment. In vivo promoter analysis showed that the ohrR promoter (P1) has organic peroxide-inducible, strong activity, while the ohrpromoter (P2) has constitutive, weak activity. Only P1 is autoregulated by OhrR. ohr primer extension results revealed three major primer extension products corresponding to the 5′ ends ofohr mRNA, and their levels were strongly induced by tBOOH treatment. Sequence analysis of regions upstream of these sites showed no typical Xanthomonas promoter. Instead, the regions can form a stem-loop secondary structure with the 5′ ends ofohr mRNA located in the loop section. The secondary structure resembles the structure recognized and processed by RNase III enzyme. These findings suggest that the P1 promoter is responsible for tBOOH-induced expression of the ohrR-ohr operon. The bicistronic mRNA is then processed by RNase III-like enzymes to give high levels of ohr mRNA, while ohrR mRNA is rapidly degraded.


1989 ◽  
Vol 9 (11) ◽  
pp. 5073-5080 ◽  
Author(s):  
M Kozak

The context requirements for recognition of an initiator codon were evaluated in vitro by monitoring the relative use of two AUG codons that were strategically positioned to produce long (pre-chloramphenicol acetyl transferase [CAT]) and short versions of CAT protein. The yield of pre-CAT initiated from the 5'-proximal AUG codon increased, and synthesis of CAT from the second AUG codon decreased, as sequences flanking the first AUG codon increasingly resembled the eucaryotic consensus sequence. Thus, under prescribed conditions, the fidelity of initiation in extracts from animal as well as plant cells closely mimics what has been observed in vivo. Unexpectedly, recognition of an AUG codon in a suboptimal context was higher when the adjacent downstream sequence was capable of assuming a hairpin structure than when the downstream region was unstructured. This finding adds a new, positive dimension to regulation by mRNA secondary structure, which has been recognized previously as a negative regulator of initiation. Translation of pre-CAT from an AUG codon in a weak context was not preferentially inhibited under conditions of mRNA competition. That result is consistent with the scanning model, which predicts that recognition of the AUG codon is a late event that occurs after the competition-sensitive binding of a 40S ribosome-factor complex to the 5' end of mRNA. Initiation at non-AUG codons was evaluated in vitro and in vivo by introducing appropriate mutations in the CAT and preproinsulin genes. GUG was the most efficient of the six alternative initiator codons tested, but GUG in the optimal context for initiation functioned only 3 to 5% as efficiently as AUG. Initiation at non-AUG codons was artifactually enhanced in vitro at supraoptimal concentrations of magnesium.


Sign in / Sign up

Export Citation Format

Share Document