scholarly journals Mutations in the spike RBD of SARS-CoV-2 omicron variant may increase infectivity without dramatically altering the efficacy of current multi-dosage vaccinations

2021 ◽  
Author(s):  
Bingrui Li ◽  
Xin Luo ◽  
Kathleen M McAndrews ◽  
Raghu Kalluri

With the continuous evolution of SARS-CoV-2, variants of concern (VOCs) and their mutations are a focus of rapid assessment. Vital mutations in the VOC are found in spike protein, particularly in the receptor binding domain (RBD), which directly interacts with ACE2 on the host cell membrane, a key determinant of the binding affinity and cell entry. With the reporting of the most recent VOC, omicron, we performed amino acid sequence alignment of the omicron spike protein with that of the wild type and other VOCs. Although it shares several conserved mutations with other variants, we found that omicron has a large number of unique mutations. We applied the Hopp-Woods scale to calculate the hydrophilicity scores of the amino acid stretches of the RBD and the entire spike protein, and found 3 new hydrophilic regions in the RBD of omicron, implying exposure to water, with the potential to bind proteins such as ACE2 increasing transmissibility and infectivity. However, careful analysis reveals that most of the exposed domains of spike protein can serve as antigenic epitopes for generating B cell and T cell-mediated immune responses. This suggests that in the collection of polyclonal antibodies to various epitopes generated after multiple doses of vaccination, some can likely still bind to the omicron spike protein and the RBD to prevent severe clinical disease. In summary, while the omicron variant might result in more infectivity, it can still bind to a reasonable repertoire of antibodies generated by multiple doses of current vaccines likely preventing severe disease. Effective vaccines may not universally prevent opportunistic infections but can prevent the sequelae of severe disease, as observed for the delta variant. This might still be the case with the omicron variant, albeit, with increased frequency of infection.

2020 ◽  
Author(s):  
Z. Galen WO

The infectious 2019-nCoV virus, which caused the current novel coronavirus pneumonia epidemic outbreak, possesses a unique 4-Amino Acid insert at the boundary of the two subdomains (S1 and S2) of Spike protein based on multiple protein sequence alignment with the large SARS and SARS-related virus family. Using Bat CoV_RaTG13 Spike protein as reference (sharing 97% aa identity) the 4-amino acid insert can be identified as PRRA (AA position 681-684). The effect of the 4-AA insertion is the presence of a furin signature sequence motif (PRRARSV) at the boundary of S1 and S2 domains of spike protein. This sequence motif consists the required Arg residue for P1 and P4 position of Furin site. In addition, it contains Arg at P3 site as well as Ser at P1’ site of furin motif. This sequence motif matches Aerolysin furin site in FurinDB and was predicted to be moderately strong (score 0.62) by ProP, a protease cleavage site prediction program. This finding suggests that the infectious 2019-nCoV virus, unlike SARS viruses, may be processed via cellular furin recognition and cleavage of the spike protein before host cell membrane fusion and entry. This putative furin site in spike protein of 2019-nCoV virus, if proven to be functional, suggests the potential of looking into agents inhibiting furin as therapeutic mean for the treatment of the novel coronavirus pneumonia.


2021 ◽  
Author(s):  
Chitra Pattabiraman ◽  
Pramada Prasad ◽  
Anson K George ◽  
Darshan Sreenivas ◽  
Risha Rasheed ◽  
...  

As the pandemic of COVID-19 caused by the coronavirus SARS-CoV-2 continues, the selection of genomic variants which can influence how the pandemic progresses is of growing concern. Of particular concern, are those variants that carry mutations/amino acid changes conferring higher transmission, more severe disease, re-infection, and immune escape. These can broadly be classified as Variants of Concern (VOCs). VOCs have been reported from several parts of the world- UK (lineage B.1.1.7), South Africa (lineage B.1.351) and, Brazil (lineage P.1/B.1.1.28). The conditions that contribute to the emergence of VOCs are not well understood. International travel remains an important means of spread. To track importation, spread, and the emergence of variants locally; we sequenced whole genomes of SARS-CoV-2 from international travellers (n=75) entering Karnataka, a state in South India, between Dec 22, 2020- Jan 31, 2021, and from positive cases in the city of Bengaluru (n=108), between Nov 22, 2020- Jan 22, 2021. The resulting 176 SARS-CoV-2 genomes could be classified into 34 lineages, that were either imported (73/176) or circulating (103/176) in this time period. The lineage B.1.1.7 (a.k.a the UK variant) was the major lineage imported into the state (24/73, 32.9%), followed by B.1.36 (20/73, 27.4%) and B.1 (14/73, 19.2%). We identified B.1.36 (45/103; 43.7%), B.1 (26/103; 25.2%), B.1.1.74 (5/103; 4.9%) and B.1.468 (4/103; 3.9%) as the major variants circulating in Bengaluru city. A distinct clade within the B.1.36 lineage was associated with a local outbreak. Analysis of the complete genomes predicted multiple amino acid replacements in the Spike protein. In total, we identified nine amino acid changes (singly or in pairs) in the Receptor Binding Domain of the Spike protein. Of these, the amino acid replacement N440K was found in 37/65 (56.92%) sequences in the B.1.36 lineage. The E484K amino acid change which is present in both VOCs, B.1.351 and P.1/B.1.1.28, was found in a single circulating virus in the B.1.36 lineage. This study highlights the introduction of VOCs by travel and the local circulation of viruses with amino acid replacements in the Spike protein. These were spread across lineages, suggesting that multiple paths can lead to the emergence of VOCs, this, in turn, highlights the need to sequence and limit outbreaks of SARS-CoV-2 locally. Our data support the use of concentrated and continued genomic surveillance of SARS-CoV-2 to direct public health measures, suggest revisions to vaccines, and serve as an early warning system to prepare for a surge in COVID-19 cases.


2020 ◽  
Author(s):  
Chen Yang ◽  
Yu Zhang ◽  
Hong Chen ◽  
Yuchen Chen ◽  
Dong Yang ◽  
...  

AbstractCOVID-19 patients present high incidence of kidney abnormalities, which are associated with poor prognosis and high mortality. Identification of SARS-CoV-2 in kidney of COVID-19 patients suggests renal tropism and direct infection. Presently, it is generally recognized that SARS-CoV-2 initiates invasion through binding of receptor-binding domain (RBD) of spike protein to host cell-membrane receptor ACE2, however, whether there is additional target of SARS-CoV-2 in kidney remains unclear. Kidney injury molecule-1 (KIM1) is a transmembrane protein that drastically up-regulated after renal injury. Here, binding between SARS-CoV2-RBD and the extracellular Ig V domain of KIM1 was identified by molecular simulations and co-immunoprecipitation, which was comparable in affinity to that of ACE2 to SARS-CoV-2. Moreover, KIM1 facilitated cell entry of SARS-CoV2-RBD, which was potently blockaded by a rationally designed KIM1-derived polypeptide. Together, the findings suggest KIM1 may mediate and exacerbate SARS-CoV-2 infection in a ‘vicious cycle’, and KIM1 could be further explored as a therapeutic target.


2021 ◽  
Vol 12 ◽  
Author(s):  
Damiano Buratto ◽  
Abhishek Saxena ◽  
Qun Ji ◽  
Guang Yang ◽  
Sergio Pantano ◽  
...  

SARS-CoV-2 infects humans and causes Coronavirus disease 2019 (COVID-19). The S1 domain of the spike glycoprotein of SARS-CoV-2 binds to human angiotensin-converting enzyme 2 (hACE2) via its receptor-binding domain, while the S2 domain facilitates fusion between the virus and the host cell membrane for entry. The spike glycoprotein of circulating SARS-CoV-2 genomes is a mutation hotspot. Some mutations may affect the binding affinity for hACE2, while others may modulate S-glycoprotein expression, or they could result in a virus that can escape from antibodies generated by infection with the original variant or by vaccination. Since a large number of variants are emerging, it is of vital importance to be able to rapidly assess their characteristics: while changes of binding affinity alone do not always cause direct advantages for the virus, they still can provide important insights on where the evolutionary pressure is directed. Here, we propose a simple and cost-effective computational protocol based on Molecular Dynamics simulations to rapidly screen the ability of mutated spike protein to bind to the hACE2 receptor and selected neutralizing biomolecules. Our results show that it is possible to achieve rapid and reliable predictions of binding affinities. A similar approach can be used to perform preliminary screenings of the potential effects of S-RBD mutations, helping to prioritize the more time-consuming and expensive experimental work.


PLoS ONE ◽  
2009 ◽  
Vol 4 (7) ◽  
pp. e6130 ◽  
Author(s):  
Yoshiyuki Yamada ◽  
Xiao Bo Liu ◽  
Shou Guo Fang ◽  
Felicia P. L. Tay ◽  
Ding Xiang Liu

2021 ◽  
Vol 22 (12) ◽  
pp. 6490
Author(s):  
Olga A. Postnikova ◽  
Sheetal Uppal ◽  
Weiliang Huang ◽  
Maureen A. Kane ◽  
Rafael Villasmil ◽  
...  

The SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681–684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome. One of such features is two tandem CGG codons, although the CGG codon is the rarest codon in the SARS-CoV-2 genome. This suggests that the insertion sequence could cause ribosome pausing as the result of these rare codons. Due to population variants, the Nextstrain divergence measure of the CCU codon is extremely large. We cannot exclude that this divergence might affect host immune responses/effectiveness of SARS-CoV-2 vaccines, possibilities awaiting further investigation. Our experimental studies show that the expression level of original RNA sequence “wildtype” spike protein is much lower than for codon-optimized spike protein in all studied cell lines. Interestingly, the original spike sequence produces a higher titer of pseudoviral particles and a higher level of infection. Further mutagenesis experiments suggest that this dual-effect insert, comprised of a combination of overlapping translation pausing and furin sites, has allowed SARS-CoV-2 to infect its new host (human) more readily. This underlines the importance of ribosome pausing to allow efficient regulation of protein expression and also of cotranslational subdomain folding.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 238
Author(s):  
Malgorzata Kloc ◽  
Ahmed Uosef ◽  
Jacek Z. Kubiak ◽  
Rafik M. Ghobrial

Human placenta formation relies on the interaction between fused trophoblast cells of the embryo with uterine endometrium. The fusion between trophoblast cells, first into cytotrophoblast and then into syncytiotrophoblast, is facilitated by the fusogenic protein syncytin. Syncytin derives from an envelope glycoprotein (ENV) of retroviral origin. In exogenous retroviruses, the envelope glycoproteins coded by env genes allow fusion of the viral envelope with the host cell membrane and entry of the virus into a host cell. During mammalian evolution, the env genes have been repeatedly, and independently, captured by various mammalian species to facilitate the formation of the placenta. Such a shift in the function of a gene, or a trait, for a different purpose during evolution is called an exaptation (co-option). We discuss the structure and origin of the placenta, the fusogenic and non-fusogenic functions of syncytin, and the mechanism of cell fusion. We also comment on an alleged danger of the COVID-19 vaccine based on the presupposed similarity between syncytin and the SARS-CoV-2 spike protein.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suman Pokhrel ◽  
Benjamin R. Kraemer ◽  
Scott Burkholz ◽  
Daria Mochly-Rosen

AbstractIn December 2019, a novel coronavirus, termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of pneumonia with severe respiratory distress and outbreaks in Wuhan, China. The rapid and global spread of SARS-CoV-2 resulted in the coronavirus 2019 (COVID-19) pandemic. Earlier during the pandemic, there were limited genetic viral variations. As millions of people became infected, multiple single amino acid substitutions emerged. Many of these substitutions have no consequences. However, some of the new variants show a greater infection rate, more severe disease, and reduced sensitivity to current prophylaxes and treatments. Of particular importance in SARS-CoV-2 transmission are mutations that occur in the Spike (S) protein, the protein on the viral outer envelope that binds to the human angiotensin-converting enzyme receptor (hACE2). Here, we conducted a comprehensive analysis of 441,168 individual virus sequences isolated from humans throughout the world. From the individual sequences, we identified 3540 unique amino acid substitutions in the S protein. Analysis of these different variants in the S protein pinpointed important functional and structural sites in the protein. This information may guide the development of effective vaccines and therapeutics to help arrest the spread of the COVID-19 pandemic.


2001 ◽  
Vol 183 (9) ◽  
pp. 2724-2732 ◽  
Author(s):  
Céline Lévesque ◽  
Christian Vadeboncoeur ◽  
Fatiha Chandad ◽  
Michel Frenette

ABSTRACT Streptococcus salivarius, a gram-positive bacterium found in the human oral cavity, expresses flexible peritrichous fimbriae. In this paper, we report purification and partial characterization of S. salivarius fimbriae. Fimbriae were extracted by shearing the cell surface of hyperfimbriated mutant A37 (a spontaneous mutant of S. salivarius ATCC 25975) with glass beads. Preliminary experiments showed that S. salivariusfimbriae did not dissociate when they were incubated at 100°C in the presence of sodium dodecyl sulfate. This characteristic was used to separate them from other cell surface components by successive gel filtration chromatography procedures. Fimbriae with molecular masses ranging from 20 × 106 to 40 × 106Da were purified. Examination of purified fimbriae by electron microscopy revealed the presence of filamentous structures up to 1 μm long and 3 to 4 nm in diameter. Biochemical studies of purified fimbriae and an amino acid sequence analysis of a fimbrial internal peptide revealed that S. salivarius fimbriae were composed of a glycoprotein assembled into a filamentous structure resistant to dissociation. The internal amino acid sequence was composed of a repeated motif of two amino acids alternating with two modified residues: A/X/T-E-Q-M/φ, where X represents a modified amino acid residue and φ represents a blank cycle. Immunolocalization experiments also revealed that the fimbriae were associated with a wheat germ agglutinin-reactive carbohydrate. Immunolabeling experiments with antifimbria polyclonal antibodies showed that antigenically related fimbria-like structures were expressed in two other human oral streptococcal species, Streptococcus mitis andStreptococcus constellatus.


2021 ◽  
Vol 22 (4) ◽  
pp. 1695
Author(s):  
Bruno O. Villoutreix ◽  
Vincent Calvez ◽  
Anne-Geneviève Marcelin ◽  
Abdel-Majid Khatib

SARS-CoV-2 exploits angiotensin-converting enzyme 2 (ACE2) as a receptor to invade cells. It has been reported that the UK and South African strains may have higher transmission capabilities, eventually in part due to amino acid substitutions on the SARS-CoV-2 Spike protein. The pathogenicity seems modified but is still under investigation. Here we used the experimental structure of the Spike RBD domain co-crystallized with part of the ACE2 receptor, several in silico methods and numerous experimental data reported recently to analyze the possible impacts of three amino acid replacements (Spike K417N, E484K, N501Y) with regard to ACE2 binding. We found that the N501Y replacement in this region of the interface (present in both the UK and South African strains) should be favorable for the interaction with ACE2, while the K417N and E484K substitutions (South African strain) would seem neutral or even unfavorable. It is unclear if the N501Y substitution in the South African strain could counterbalance the K417N and E484K Spike replacements with regard to ACE2 binding. Our finding suggests that the UK strain should have higher affinity toward ACE2 and therefore likely increased transmissibility and possibly pathogenicity. If indeed the South African strain has a high transmission level, this could be due to the N501Y replacement and/or to substitutions in regions located outside the direct Spike–ACE2 interface but not so much to the K417N and E484K replacements. Yet, it should be noted that amino acid changes at Spike position 484 can lead to viral escape from neutralizing antibodies. Further, these amino acid substitutions do not seem to induce major structural changes in this region of the Spike protein. This structure–function study allows us to rationalize some observations made for the UK strain but raises questions for the South African strain.


Sign in / Sign up

Export Citation Format

Share Document