scholarly journals Mitochondria-mediated Maternal-fetal Interactions and Consequences of Mitochondrial Dysregulation Indicate New Roles for Mitochondria in Hypertensive Pregnancies

Author(s):  
Contessa A Ricci ◽  
Danielle M Reid ◽  
Jie Sun ◽  
Donna A Santillan ◽  
Mark K Santillan ◽  
...  

Oxidative stress, placental mitochondrial morphological alterations, and impaired bioenergetics are associated with hypertensive disorders of pregnancy. Here we examined mitochondrial DNA mutational load in pregnant women with pregnancy-induced hypertension and reanalyzed publicly available high-throughput transcriptomic datasets from maternal and fetal tissues from normotensive and hypertensive pregnancies. Mitochondrial dysregulation was indicated by aberrant mitochondrial gene expression, and putative consequences were examined. Women with hypertensive pregnancy had elevated mitochondrial DNA mutational load. Maternal mitochondrial dysregulation in hypertensive pregnancies was associated with pathways involved in inflammation, cell death/survival, and placental development. In fetal tissues from hypertensive pregnancies, mitochondrial dysregulation was associated with increased extracellular vesicle production. Our study demonstrates mitochondria-mediated maternal-fetal interactions during healthy pregnancy and maternal mitochondrial dysregulation in hypertensive pregnancy development.

Genetics ◽  
1998 ◽  
Vol 150 (4) ◽  
pp. 1605-1614
Author(s):  
Junyuan Wu ◽  
Konstantin V Krutovskii ◽  
Steven H Strauss

Abstract We examined mitochondrial DNA polymorphisms via the analysis of restriction fragment length polymorphisms in three closely related species of pines from western North America: knobcone (Pinus attenuata Lemm.), Monterey (P. radiata D. Don), and bishop (P. muricata D. Don). A total of 343 trees derived from 13 populations were analyzed using 13 homologous mitochondrial gene probes amplified from three species by polymerase chain reaction. Twenty-eight distinct mitochondrial DNA haplotypes were detected and no common haplotypes were found among the species. All three species showed limited variability within populations, but strong differentiation among populations. Based on haplotype frequencies, genetic diversity within populations (HS) averaged 0.22, and population differentiation (GST and θ) exceeded 0.78. Analysis of molecular variance also revealed that >90% of the variation resided among populations. For the purposes of genetic conservation and breeding programs, species and populations could be readily distinguished by unique haplotypes, often using the combination of only a few probes. Neighbor-joining phenograms, however, strongly disagreed with those based on allozymes, chloroplast DNA, and morphological traits. Thus, despite its diagnostic haplotypes, the genome appears to evolve via the rearrangement of multiple, convergent subgenomic domains.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 526
Author(s):  
Myriam Vaillancourt ◽  
Audrey Hubert ◽  
Caroline Subra ◽  
Julien Boucher ◽  
Wilfried Wenceslas Bazié ◽  
...  

Extracellular vesicles (EVs) and their contents (proteins, lipids, messenger RNA, microRNA, and DNA) are viewed as intercellular signals, cell-transforming agents, and shelters for viruses that allow both diagnostic and therapeutic interventions. EVs circulating in the blood of individuals infected with human immunodeficiency virus (HIV-1) may provide insights into pathogenesis, inflammation, and disease progression. However, distinguishing plasma membrane EVs from exosomes, exomeres, apoptotic bodies, virions, and contaminating proteins remains challenging. We aimed at comparing sucrose and iodixanol density and velocity gradients along with commercial kits as a means of separating EVs from HIV particles and contaminating protein like calprotectin; and thereby evaluating the suitability of current plasma EVs analysis techniques for identifying new biomarkers of HIV-1 immune activation. Multiple analysis have been performed on HIV-1 infected cell lines, plasma from HIV-1 patients, or plasma from HIV-negative individuals spiked with HIV-1. Commercial kits, the differential centrifugation and density or velocity gradients to precipitate and separate HIV, EVs, and proteins such as calprotectin, have been used. EVs, virions, and contaminating proteins were characterized using Western blot, ELISA, RT-PCR, hydrodynamic size measurement, and enzymatic assay. Conversely to iodixanol density or velocity gradient, protein and virions co-sedimented in the same fractions of the sucrose density gradient than AChE-positive EVs. Iodixanol velocity gradient provided the optimal separation of EVs from viruses and free proteins in culture supernatants and plasma samples from a person living with HIV (PLWH) or a control and revealed a new population of large EVs enriched in microRNA miR-155 and mitochondrial DNA. Although EVs and their contents provide helpful information about several key events in HIV-1 pathogenesis, their purification and extensive characterization by velocity gradient must be investigated thoroughly before further use as biomarkers. By revealing a new population of EVs enriched in miR-155 and mitochondrial DNA, this study paves a way to increase our understanding of HIV-1 pathogenesis.


Genetics ◽  
1996 ◽  
Vol 144 (4) ◽  
pp. 1519-1528
Author(s):  
J William O Ballad ◽  
Joy Hatzidakis ◽  
Timothy L Karr ◽  
Martin Kreitman

We investigated the evolutionary dynamics of infection of a Drosophila simulans population by a maternally inherited insect bacterial parasite, Wolbachia, by analyzing nucleotide variability in three regions of the mitochondrial genome in four infected and 35 uninfected lines. Mitochondrial variability is significantly reduced compared to a noncoding region of a nuclear-encoded gene in both uninfected and pooled samples of flies, indicating a sweep of genetic variation. The selective sweep of mitochondrial DNA may have been generated by the fixation of an advantageous mitochondrial gene mutation in the mitochondrial genome. Alternatively, the dramatic reduction in mitochondrial diversity may be related to Wolbachia.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
F Dahadhah ◽  
M. Sale Jaweesh ◽  
M. Sali. A Zoubi ◽  
M Issa. Ab. Alarjah ◽  
M Ei Hammadeh ◽  
...  

Abstract Study question Is there any association between male infertility and the polymorphic variants of Mitochondrial Nicotinamide Adenine Dinucleotide Hydride dehydrogenase (NADH) Subunit 4 (MT-ND4)? Summary answer Our findings suggested that male infertility was correlated to rs2853495 and rs869096886 SNPs in MTND4. What is known already The rate of mutations in the mtDNA, the powerhouse of the cell, is high due to the lack of histones and DNA repair mechanisms. Therefore, mutations that occur in the mitochondrial genome, play a major role in some human genetic disorders. 15 - 30% of male infertility are related to genetic predisposition. Sperm containing defective mitochondria cannot effectively produce ATP and more likely to produce reactive oxygen species (ROS) and free radicals, thereby causing a defect in mtDNA, make trouble energy, and deteriorate motility and fertility. Study design, size, duration: A prospective study carried out between 2018 and 2019. 112 semen samples were collected in this study. Participants/materials, setting, methods The present study was carried out at the department of Obstetrics and Gynecology, University of Saarland, Germany. Samples were divided into 68 subfertile and 44 fertile men. Mitochondrial DNA was extracted using a QIAamp DNA Mini Kit, after that the mtDNA was amplified by using REPLI-g Mitochondrial DNA Kit. Polymerase chain reaction (PCR) was used to amplify MT-ND4 gene. Then, samples were purified and sequenced using the Sanger method in the Microsynth Seq lab, Germany. Main results and the role of chance The genotypes frequencies of the study population showed a statistically significant association between rs2853495 G>A (Gly320Gly) and male infertility (P = 0.0351). Similarly, the allele frequency test showed that rs2853495 G>A (Gly320Gly) and rs869096886 A>G (Leu164Leu) were significantly associated with male infertility (adjusted OR = 2.616, 95% CI = 1.374 - 4.983, P = 0.0028; adjusted OR = 2.237, 95% CI = 1.245 - 4.017, P = 0.0073, respectively). On the other hand, no statistically significant difference was observed between the asthenozoospermia, oligozoospermia, teratozoospermia, asthenoteratozoospermia, oligoasthenoteratozoospermia, oligoteratozoospermia subgroups of subfertile males and the fertile ones. Limitations, reasons for caution The size number of the study samples. Wider implications of the findings: A larger prospective study will be required to confirm these associations of mitochondrial gene polymorphisms rs2853495 and rs869096886 in MT-ND4 and male infertility and to clarify the definite effect of the mitochondrial genetic variations on male infertility. Trial registration number Not applicable


2006 ◽  
Vol 37 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Gregor Kölsch ◽  
Bo Vest Pedersen ◽  
Olof Biström

AbstractThe genus Macroplea Samouelle, 1819 is a group of highly specialized aquatic leaf beetles occurring in the Palaearctic. Since the members of this genus are morphologically very similar, we addressed the question of species identification and delimitation by analysing the second half of the mitochondrial gene coding for the cytochrome oxidase I (COI) subunit. Species limits are inferred from the multimodal frequency distribution of genetic distances between specimens: low genetic distances within a species are clearly set apart from distances between species. The species status of the hitherto controversial species M. japana (Jacoby, 1885) is confirmed. The pattern of nucleotide and amino acid substitutions is discussed in the light of functional domains of the COI molecule. Although the data are preliminary, the results provide new data on the distribution of the species. Together with the phylogenetic analysis they allow for a discussion of the phylogeography of the genus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Meltem Weger ◽  
Daniel Alpern ◽  
Antoine Cherix ◽  
Sriparna Ghosal ◽  
Jocelyn Grosse ◽  
...  

Abstract Mitochondrial dysfunction was highlighted as a crucial vulnerability factor for the development of depression. However, systemic studies assessing stress-induced changes in mitochondria-associated genes in brain regions relevant to depression symptomatology remain scarce. Here, we performed a genome-wide transcriptomic study to examine mitochondrial gene expression in the prefrontal cortex (PFC) and nucleus accumbens (NAc) of mice exposed to multimodal chronic restraint stress. We identified mitochondria-associated gene pathways as most prominently affected in the PFC and with lesser significance in the NAc. A more detailed mitochondrial gene expression analysis revealed that in particular mitochondrial DNA-encoded subunits of the oxidative phosphorylation complexes were altered in the PFC. The comparison of our data with a reanalyzed transcriptome data set of chronic variable stress mice and major depression disorder subjects showed that the changes in mitochondrial DNA-encoded genes are a feature generalizing to other chronic stress-protocols as well and might have translational relevance. Finally, we provide evidence for changes in mitochondrial outputs in the PFC following chronic stress that are indicative of mitochondrial dysfunction. Collectively, our work reinforces the idea that changes in mitochondrial gene expression are key players in the prefrontal adaptations observed in individuals with high behavioral susceptibility and resilience to chronic stress.


1990 ◽  
Vol 3 (1) ◽  
pp. 111 ◽  
Author(s):  
RH Crozier

Mitochondrial DNA (mtDNA) is clonally and maternally inherited in all animals and in most plants. Mitochondrial gene content is similar although not identical in all eukaryotes. Because of these characteristics, mtDNA has a number of features useful to systematists for all levels of evolutionary divergence. Clonal inheritance leads to unusual confidence in constructing gene trees which are useful in population-level studies, such as in the detection of population subdivision. Maternal inheritance presents the opportunity to distinguish paternal from maternal gene flow. The clonal, or single-gene, nature of mtDNA inheritance leads to consideration of the expected convergence between gene- and species-trees. For closely related populations or species, it is desirable to use several genes to be sure that the correct species-tree is discovered; this means that, although mtDNA will be the most precise guide to the species tree because of its lower effective population size, nuclear genes should also be used in such studies. Although restriction fragment length polymorphisms dominated the field until recently, sequencing following DNA amplification using the polymerase chain reaction is now easier and opens up the use of preserved specimens to molecular systematists. Because mitochondria1 genes evolve at different rates, one of appropriate rate can be selected for almost any phylogenetic problem.


Biologia ◽  
2008 ◽  
Vol 63 (6) ◽  
Author(s):  
Elsa Froufe ◽  
Pedro Sousa ◽  
Paulo Alves ◽  
David Harris

AbstractThe large-clawed scorpion, Scorpio maurus, is a medically important scorpion and yet nothing is known regarding genetic diversity within this species. As a preliminary analysis we determined variation within the cytochrome oxidase 1 (CO1) mitochondrial gene from specimens from Morocco. High levels of genetic diversity were found that presented some geographical coherence. Of the two identified subspecies from Morocco, S. maurus birulai and S. maurus fuliginosus, the latter included genetically distinct lineages (8.0% uncorrected sequence divergence), indicating a detailed morphological and molecular revision is needed for this species.


Genetics ◽  
1988 ◽  
Vol 120 (3) ◽  
pp. 707-712
Author(s):  
B C Hyman ◽  
J L Beck ◽  
K C Weiss

Abstract The nematode Romanomermis culicivorax, an obligate mosquito parasite, possesses a 26 kilobase (kb) mitochondrial genome. The unusually large size is due to transcriptionally active DNA sequences present as 3.0 kb direct tandem repeats and as inverted portions of the repeating unit located elsewhere in the mitochondrial DNA (mtDNA). The genome rearrangements involved in establishing this unusual sequence organization may have dramatically altered conventional mitochondrial gene order. Genes for subunits of the cytochrome c oxidase complex (COI and COII) are normally closely linked in animal mtDNAs, but are separated by approximately 8 kb in this mitochondrial genome.


Sign in / Sign up

Export Citation Format

Share Document