scholarly journals Single cell RNA sequencing and lineage tracing confirm mesenchyme to epithelial transformation (MET) contributes to repair of the endometrium at menstruation

2021 ◽  
Author(s):  
Phoebe M Kirkwood ◽  
Douglas A Gibson ◽  
Isaac Shaw ◽  
Ross Dobie ◽  
Olympia Kelepouri ◽  
...  

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study we used a validated mouse model of endometrial repair in combination with three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the cycling endometrium. Using scRNAseq we identified a novel population of PDGFRb+ cells that arose in the endometrium in response to endometrial breakdown/repair. These cells expressed genes usually considered specific to epithelial cells and in silico trajectory analysis suggested they arose from stromal fibroblasts and were in transition to becoming epithelial cells. To confirm our hypothesis we used a lineage tracing strategy to compare the fate of stromal fibroblasts (PDGFRa+) and stromal perivascular cells (NG2+). We demonstrate for the first time that stromal fibroblasts can undergo a mesenchyme to epithelial transformation and become incorporated into the re-epithelialised luminal surface of the repaired tissue. This study is the first to discover a novel population of wound-responsive, plastic endometrial stromal fibroblasts that contribute to restoration of tissue integrity during endometrial repair. These findings form a platform for comparisons both to endometrial pathologies which involve a fibrotic response (Ashermans syndrome, endometriosis) as well as other mucosal tissues which have a variable response to wounding.

2020 ◽  
Vol 13 (10) ◽  
pp. dmm047035
Author(s):  
Dah-Jiun Fu ◽  
Andrea J. De Micheli ◽  
Mallikarjun Bidarimath ◽  
Lora H. Ellenson ◽  
Benjamin D. Cosgrove ◽  
...  

ABSTRACTHumans and mice have cyclical regeneration of the endometrial epithelium. It is expected that such regeneration is ensured by tissue stem cells, but their location and hierarchy remain debatable. A number of recent studies have suggested the presence of stem cells in the mouse endometrial epithelium. At the same time, it has been reported that this tissue can be regenerated by stem cells of stromal/mesenchymal or bone marrow cell origin. Here, we describe a single-cell transcriptomic atlas of the main cell types of the mouse uterus and epithelial subset transcriptome and evaluate the contribution of epithelial cells expressing the transcription factor PAX8 to the homeostatic regeneration and malignant transformation of adult endometrial epithelium. According to lineage tracing, PAX8+ epithelial cells are responsible for long-term maintenance of both luminal and glandular epithelium. Furthermore, multicolor tracing shows that individual glands and contiguous areas of luminal epithelium are formed by clonal cell expansion. Inactivation of the tumor suppressor genes Trp53 and Rb1 in PAX8+ cells, but not in FOXJ1+ cells, leads to the formation of neoplasms with features of serous endometrial carcinoma, one of the most aggressive types of human endometrial malignancies. Taken together, our results show that the progeny of single PAX8+ cells represents the main source of regeneration of the adult endometrial epithelium. They also provide direct experimental genetic evidence for the key roles of the P53 and RB pathways in the pathogenesis of serous endometrial carcinoma and suggest that PAX8+ cells represent the cell of origin of this neoplasm.


2020 ◽  
Vol 1 (4) ◽  
pp. 155-162
Author(s):  
CF Hung

Abstract Purpose of Review In this brief review, we will highlight important observational and experimental data in the literature that address the origin of scar-forming cells in lung fibrosis. Recent Findings Several cellular sources of activated scar-forming cells (myofibroblasts) have been postulated including alveolar epithelial cells; circulating fibrocytes; and lung stromal cell subpopulations including resident fibroblasts, pericytes, and resident mesenchymal stem cells. Recent advances in lineage-tracing models, however, fail to provide experimental evidence for epithelial and fibrocyte origins of lung myofibroblasts. Resident mesenchymal cells of the lung, which include various cell types including resident fibroblasts, pericytes, and resident mesenchymal stem cells, appear to be important sources of myofibroblasts in murine models of lung injury and fibrosis. Summary Lung myofibroblasts likely originate from multiple sources of lung-resident mesenchymal cells. Their relative contributions may vary depending on the type of injury. Although lineage-tracing experiments have failed to show significant contribution from epithelial cells or fibrocytes, they may play important functional roles in myofibroblast activation through paracrine signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mickey V. Patel ◽  
Marta Rodriguez-Garcia ◽  
Zheng Shen ◽  
Charles R. Wira

AbstractMucosal integrity in the endometrium is essential for immune protection. Since breaches or injury to the epithelial barrier exposes underlying tissue and is hypothesized to increase infection risk, we determined whether endogenous progesterone or three exogenous progestins (medroxyprogesterone acetate (MPA), norethindrone (NET), and levonorgestrel (LNG)) used by women as contraceptives interfere with wound closure of endometrial epithelial cells and fibroblasts in vitro. Progesterone and LNG had no inhibitory effect on wound closure by either epithelial cells or fibroblasts. MPA significantly impaired wound closure in both cell types and delayed the reestablishment of transepithelial resistance by epithelial cells. In contrast to MPA, NET selectively decreased wound closure by stromal fibroblasts but not epithelial cells. Following epithelial injury, MPA but not LNG or NET, blocked the injury-induced upregulation of HBD2, a broad-spectrum antimicrobial implicated in wound healing, but had no effect on the secretion of RANTES, CCL20 and SDF-1α. This study demonstrates that, unlike progesterone and LNG, MPA and NET may interfere with wound closure following injury in the endometrium, potentially conferring a higher risk of pathogen transmission. Our findings highlight the importance of evaluating progestins for their impact on wound repair at mucosal surfaces.


Development ◽  
1998 ◽  
Vol 125 (14) ◽  
pp. 2621-2629 ◽  
Author(s):  
Y. Yang ◽  
K.C. Palmer ◽  
N. Relan ◽  
C. Diglio ◽  
L. Schuger

Undifferentiated mesenchymal cells were isolated from mouse embryonic lungs and plated at subconfluent and confluent densities. During the first 5 hours in culture, all the cells were negative for smooth muscle markers. After 24 hours in culture, the mesenchymal cells that spread synthesized smooth muscle alpha-actin, muscle myosin, desmin and SM22 in levels comparable to those of mature smooth muscle. The cells that did not spread remained negative for smooth muscle markers. SM differentiation was independent of cell-cell contact or proliferation. In additional studies, undifferentiated lung mesenchymal cells were cocultured with lung embryonic epithelial cells at high density. The epithelial cells aggregated into cysts surrounded by mesenchymal cells and a basement membrane was formed between the two cell types. In these cocultures, the mesenchymal cells in contact with the basement membrane spread and differentiated into smooth muscle. The rest of the mesenchymal cells remained round and negative for smooth muscle markers. Inhibition of laminin polymerization by an antibody to the globular regions of laminin beta1/gamma1 chains blocked basement membrane assembly, mesenchymal cell spreading and smooth muscle differentiation. These studies indicated that lung embryonic mesenchymal cells have the potential to differentiate into smooth muscle and the process is triggered by their spreading along the airway basement membrane.


Reproduction ◽  
2000 ◽  
pp. 337-350 ◽  
Author(s):  
U Bentin-Ley ◽  
T Horn ◽  
A Sjogren ◽  
S Sorensen ◽  
J Falck Larsen ◽  
...  

The interactions of seven human blastocysts with cultured endometrial cells were investigated by light microscopy and transmission electron microscopy. Trophoblastic-endometrial contact was observed at the lateral border of endometrial epithelial cells where trophoblast and endometrial epithelial cells shared apical junctional complexes and desmosomes. The first sign of penetration was invasion of a trophoblastic cytoplasmic protrusion between endometrial epithelial cells. In broad contact areas, lateral displacement of endometrial epithelial cells and formation of a peripheral pseudostratified epithelium were observed. When trophoblastic cells were interposed fully among endometrial epithelial cells, they formed a penetration cone and appeared to dislodge endometrial epithelial cells from the stromal compartment. A single penetration cone only was found in each specimen. Endometrial or trophoblastic degeneration was not observed. Formation of multinucleate (>/= three nuclei per cell) trophoblast cells was not observed, but many cells displayed areas with abrupt disappearance of well-defined plasma membranes, which is indicative of syncytium formation. In this study, adhesion and penetration occurred at the same time. The human blastocysts penetrated the endometrial surface epithelium by intrusive penetration. Epithelial penetration was achieved primarily by cellular syncytiotrophoblast-like cells and the first indications of syncytium formation were observed simultaneously with penetration of the epithelium.


mSphere ◽  
2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Balaraj B. Menon ◽  
Xiaohong Zhou ◽  
Sandra Spurr-Michaud ◽  
Jaya Rajaiya ◽  
James Chodosh ◽  
...  

ABSTRACT Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of conjunctivitis cases in the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236–239, 2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69–74, 2013, doi:10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular surface epithelial cells; however, the mechanisms used by HAdVs to transit the otherwise protective mucosal barrier of ocular surface epithelial cells prior to entry remain unknown. Here, we report that the highly virulent keratoconjunctivitis-causing HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a major component of the mucosal barrier of ocular surface epithelial cells, prior to infecting underlying cells. Currently, there is no specific treatment for controlling this infection. Understanding the early steps involved in the pathogenesis of keratoconjunctivitis and using this information to intercept adenoviral entry within cells may guide the development of novel strategies for controlling the infection. Human adenoviruses (HAdV), species D in particular (HAdV-D), are frequently associated with epidemic keratoconjunctivitis (EKC). Although the infection originates at the ocular surface epithelium, the mechanisms by which HAdV-Ds bypass the membrane-associated mucin (MAM)-rich glycocalyx of the ocular surface epithelium to trigger infection and inflammation remain unknown. Here, we report that an EKC-causing adenovirus (HAdV-D37), but not a non-EKC-causing one (HAdV-D19p), induces ectodomain release of MUC16—a MAM with barrier functions at the ocular surface—from cultured human corneal and conjunctival epithelial cells. HAdV-D37, but not HAdV-D19p, is also found to decrease the glycocalyx barrier function of corneal epithelial cells, as determined by rose bengal dye penetrance assays. Furthermore, results from quantitative PCR (qPCR) amplification of viral genomic DNA using primers specific to a conserved region of the E1B gene show that, in comparison to infection by HAdV-D19p, infection by HAdV-D37 is significantly increased in corneal epithelial cells. Collectively, these results point to a MUC16 ectodomain release-dependent mechanism utilized by the EKC-causing HAdV-D37 to initiate infection at the ocular surface. These findings are important in terms of understanding the pathogenesis of adenoviral keratoconjunctivitis. Similar MAM ectodomain release mechanisms may be prevalent across other mucosal epithelia in the body (e.g., the airway epithelium) that are prone to adenoviral infection. IMPORTANCE Human adenoviruses (HAdVs) are double-stranded DNA viruses that cause infections across all mucosal tissues in the body. At the ocular surface, HAdVs cause keratoconjunctivitis (E. Ford, K. E. Nelson, and D. Warren, Epidemiol Rev 9:244–261, 1987, and C. M. Robinson, D. Seto, M. S. Jones, D. W. Dyer, and J. Chodosh, Infect Genet Evol 11:1208–1217, 2011, doi:10.1016/j.meegid.2011.04.031)—a highly contagious infection that accounts for nearly 60% of conjunctivitis cases in the United States (R. P. Sambursky, N. Fram, and E. J. Cohen, Optometry 78:236–239, 2007, doi:10.1016/j.optm.2006.11.012, and A. M. Pihos, J Optom 6:69–74, 2013, doi:10.1016/j.optom.2012.08.003). The infection begins with HAdV entry within ocular surface epithelial cells; however, the mechanisms used by HAdVs to transit the otherwise protective mucosal barrier of ocular surface epithelial cells prior to entry remain unknown. Here, we report that the highly virulent keratoconjunctivitis-causing HAdV-D37 induces release of the extracellular domain (ectodomain) of MUC16, a major component of the mucosal barrier of ocular surface epithelial cells, prior to infecting underlying cells. Currently, there is no specific treatment for controlling this infection. Understanding the early steps involved in the pathogenesis of keratoconjunctivitis and using this information to intercept adenoviral entry within cells may guide the development of novel strategies for controlling the infection.


2021 ◽  
Author(s):  
Odemaris Narvaez del Pilar ◽  
Jichao Chen

The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling. Despite such importance, mesenchymal cell types are poorly defined morphologically and molecularly, lagging behind their counterparts in the epithelial, endothelial, and immune lineages. Leveraging single-cell RNA-seq, three-dimensional imaging, and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium, and interstitium, respectively. From proximal to distal, (1) the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; (2) the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts: ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP, and Lgr6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; (3) the interstitial axis, residing between the epithelial and vascular trees and sharing a newly-identified marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium that are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals distinct morphology of each mesenchymal cell population. This classification provides a conceptual and experimental framework applicable to other organs.


2019 ◽  
Vol 98 (11) ◽  
pp. 1186-1194 ◽  
Author(s):  
M.H. Aure ◽  
J.M. Symonds ◽  
J.W. Mays ◽  
M.P. Hoffman

Maintaining salivary gland function is critical for oral health. Loss of saliva is a common side effect of therapeutic irradiation for head and neck cancer or autoimmune diseases such as Sjögren’s syndrome. There is no curative treatment, and current strategies proposed for functional regeneration include gene therapy to reengineer surviving salivary gland tissue, cell-based transplant therapy, use of bioengineered glands, and development of drugs/biologics to stimulate in vivo regeneration or increase secretion. Understanding the genetic and cellular mechanisms required for development and homeostasis of adult glands is essential to the success of these proposed treatments. Recent advances in genetic lineage tracing provide insight into epithelial lineage relationships during murine salivary gland development. During early fetal gland development, epithelial cells expressing keratin 14 (K14) Sox2, Sox9, Sox10, and Trp63 give rise to all adult epithelium, but as development proceeds, lineage restriction occurs, resulting in separate lineages of myoepithelial, ductal, and acinar cells in postnatal glands. Several niche signals have been identified that regulate epithelial development and lineage restriction. Fibroblast growth factor signaling is essential for gland development, and other important factors that influence epithelial patterning and maturation include the Wnt, Hedgehog, retinoic acid, and Hippo signaling pathways. In addition, other cell types in the local microenvironment, such as endothelial and neuronal cells, can influence epithelial development. Emerging evidence also suggests that specific epithelial cells will respond to different types of salivary gland damage, depending on the cause and severity of damage and the resulting damaged microenvironment. Understanding how regeneration occurs and which cell types are affected, as well as which signaling factors drive cell lineage decisions, provides specific targets to manipulate cell fate and improve regeneration. Taken together, these recent advances in understanding cell lineages and the signaling factors that drive cell fate changes provide a guide to develop novel regenerative treatments.


Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 393-405 ◽  
Author(s):  
U. Tepass ◽  
V. Hartenstein

The Drosophila endoderm segregates into three non-neural cell types, the principle midgut epithelial cells, the adult midgut precursors, and the interstitial cell precursors, early in development. We show that this process occurs in the absence of mesoderm and requires proneural and neurogenic genes. In neurogenic mutants the principle midgut epithelial cells are missing and the other two cell types develop in great excess. Consequently, the midgut epithelium does not form. In achaete-scute complex and daughterless mutants the interstitial cell precursors do not develop and the number of adult midgut precursors is strongly reduced. Development of the principle midgut epithelial cells and formation of the midgut epithelium is restored in neurogenic proneural double mutants. The neurogenic/proneural genes are, in contrast to the neuroectoderm, not expressed in small clusters of cells but initially homogeneously in the endoderm suggesting that no prepattern exists which determines the position of the segregating cells. Hence, the segregation pattern solely depends on neurogenic/proneural gene interaction. Proneural genes are required but not sufficient to determine specific cell fates because they are required for cell type specification in both ectoderm and endoderm. Our data also suggest that the neurogenic/proneural genes are involved in the choice between epithelial versus mesenchymal cell morphologies.


2005 ◽  
Vol 72 (4) ◽  
pp. 433-441 ◽  
Author(s):  
David A Sorrell ◽  
Malgorzata Szymanowska ◽  
Marion Boutinaud ◽  
Claire Robinson ◽  
Richard WE Clarkson ◽  
...  

The mammary gland undergoes extensive tissue remodelling during each lactation cycle. During pregnancy, the epithelial compartment of the gland is vastly expanded (Benaud et al. 1998). At the end of lactation the epithelial cells undergo apoptosis and adipocyte differentiation is induced (Lilla et al. 2002). Ductal and alveolar growth during puberty and pregnancy, and the involution process require the action of proteolytic enzymes (including matrix metalloproteinases, plasminogen and membrane-peptidases) and the corresponding genes are activated during these periods (Benaud et al. 1998; Alexander et al. 2001). Matrix metalloproteinases (MMP) are expressed in several cell types of the mammary gland including stromal fibroblasts (e.g., MMP3, MMP2), epithelial cells (e.g., MMP7 or MMP9), adipocytes (e.g., MMP2) and lymphoid cells (e.g., MMP9) (Crawford et al. 1996; Lund et al. 1996; Wiseman et al. 2003). A number of knock-out mice, which are deficient for individual MMP genes (e.g., MMP2, MMP3) or plasminogen, display alterations to mammary gland structure and impairment of lactation (Lund et al. 1999; Wiseman et al. 2003).


Sign in / Sign up

Export Citation Format

Share Document