scholarly journals Interleukin 4 controls the role of macrophages in pulmonary metastatic tumor cell seeding and growth

2021 ◽  
Author(s):  
Carolina A Rodriguez-Tirado ◽  
David Entenberg ◽  
Jiufeng Li ◽  
Bin-Zhi Qian ◽  
John S Condeelis ◽  
...  

Metastasis is the systemic manifestation of cancer and the main cause of death from breast cancer. In mouse models of lung metastases, recruitment of classical monocytes from blood to the lung and their differentiation to metastasis-associated macrophages (MAMs) facilitate cancer cell extravasation, survival, and growth. Ablation of MAMs or their monocytic progenitors inhibits metastasis. We hypothesized that factors controlling macrophage polarization modulate tumor cell extravasation in the lung. We evaluated whether signaling by Th1 or Th2 cytokines in macrophages affected trans-endothelial migration of tumor cells in vitro. Interferon γ and LPS inhibited macrophage-dependent tumor cell extravasation while the Th2 cytokine interleukin-4 (IL4) enhanced this process. We demonstrated that IL4 receptor (IL4rα) null mice develop fewer and smaller lung metastasis. Adoptive transfer of wild type monocytes to IL4rα deficient mice rescued this phenotype. IL4 signaling in macrophages controls the expression of the chemokine receptor CXCR2, necessary for IL4-mediated tumor cell extravasation in vitro. Furthermore, IL4 signaling in macrophages transcriptionally regulates several other genes already causally associated with lung metastasis including CCL2, CSF1, CCR1, HGF and FLT1. The central role for IL4 signaling in MAMs was confirmed by high-resolution intravital imaging of the lung in mice at the time of metastatic seeding, which showed reduced physical interaction between tumor cells and IL4rα-deficient macrophages. This interaction enhances tumor cell survival. These data indicate that IL4 signaling in monocytes and macrophages is key during seeding and growth of breast metastasis in the lung as it regulates pro-tumoral paracrine signaling between cancer cells and macrophages.

1980 ◽  
Vol 151 (4) ◽  
pp. 984-989 ◽  
Author(s):  
V Schirrmacher ◽  
R Cheingsong-Popov ◽  
H Arnheiter

Murine hepatocytes, isolated by an in situ collagenase-perfusion technique and cultured in Petri dishes, were shown to form rosettes with liver-metastasizing syngeneic tumor cells. Pretreatment of the tumor cells with neuraminidase generally increased the binding, whereas pretreatment of the liver cells with neuraminidase abolished the binding completely. The tumor-cell binding may be mediated by the previously described lectin-like receptor of hepatocytes that also was sensitive to neuraminidase treatment and that bound desialylated cells better than normal cells. Anti-H-2 sera could efficiently inhibit the rosette formation of metastatic tumor cells with the hepatocytes, which points to a possible role of H-2 molecules in this interaction of neoplastic and normal cells.


2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Hiroshi Iwata ◽  
Piero Ricchiuto ◽  
Takuya Hara ◽  
Amitabh Sharma ◽  
Alex Mojcher ◽  
...  

Purpose: A microenvironment dominant in pro-inflammatory macrophages (“M1”) and lacking anti-inflammatory macrophages (“M2”) may promote vascular diseases. We explored and validated key regulators of such macrophage polarization. Methods and Results: Using global proteomic analysis and bioinformatics, we examined the changes in the proteomes of mouse and human macrophage cell lines (RAW264.7; THP-1) in response to interferon gamma (IFNγ) or interleukin 4 (IL-4) for M1 or M2 polarization, respectively. Among 5816 proteins in RAW264.7 and 4723 in THP-1, data filtering and clustering identified poly(ADP-ribose) polymerase 14 (PARP14) and 9 (PARP9) as candidates for key regulators of macrophage polarization, which increase in M1 and decrease in M2 condition. siRNA silencing of PARP14 in macrophages induced M1 genes TNF-α, IL-1β and iNOS, while decreased M2 markers Arg1 and MRC1, indicating that PARP14 suppresses pro-inflammatory macrophage activation and promotes anti-inflammatory polarization. PARP14 silencing induced STAT1 phosphorylation and reduced STAT6 phosphorylation, suggesting their roles in the underlying signaling mechanisms. In contrast, PARP9 silencing decreased M1 markers, as well as phosphorylation of STAT1. Of interest, a direct physical interaction between PARP14 and PARP9 was also demonstrated. In vivo evidence supported these in vitro findings. Macrophages of PARP14-deficient mice expressed markedly higher levels of M1 genes and lower levels M2 markers. PARP14 deficiency accelerated lesion development after mechanical injury in femoral arteries. Conclusions: PARP14 and PARP9 regulate macrophage activation, offering novel therapeutic targets for vascular diseases.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2894
Author(s):  
Christian R. Pangilinan ◽  
Li-Hsien Wu ◽  
Che-Hsin Lee

Targeting metastasis is a vital strategy to improve the clinical outcome of cancer patients, specifically in cases with high-grade malignancies. Here, we employed a Salmonella-based treatment to address metastasis. The potential of Salmonella as an anticancer agent has been extensively studied; however, the mechanism through which it affects metastasis remains unclear. This study found that the epithelial-to-mesenchymal transition (EMT) inducer SNAI1 was markedly reduced in Salmonella-treated melanoma cells, as revealed by immunoblotting. Furthermore, wound healing and transwell assays showed a reduced in vitro cell migration following Salmonella treatment. Transfection experiments confirmed that Salmonella acted against metastasis by suppressing protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling, which in turn inhibited SNAI1 expression. Since it is known that metastasis is also influenced by inflammation, we partly characterized the immune infiltrates in melanoma as affected by Salmonella treatment. We found through tumor-macrophage co-culture that Salmonella treatment increased high mobility group box 1 (HMGB1) secretion in tumors to coax the polarization of macrophages in favor of an M1-like phenotype, as shown by increased inducible nitric oxide synthase (iNOS) expression and Interleukin 1 Beta (IL-1β) secretion. Data from our animal study corroborated the in vitro findings, wherein the Salmonella-treated group obtained the lowest lung metastases, longer survival, and increased iNOS-expressing immune infiltrates.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii278-iii278
Author(s):  
Viktoria Melcher ◽  
Monika Graf ◽  
Marta Interlandi ◽  
Natalia Moreno ◽  
Flavia W de Faria ◽  
...  

Abstract Atypical teratoid/rhabdoid tumors (ATRT) are pediatric brain neoplasms that are known for their heterogeneity concerning pathophysiology and outcome. The three genetically rather uniform but epigenetically distinct molecular subgroups of ATRT alone do not sufficiently explain the clinical heterogeneity. Therefore, we examined the tumor microenvironment (TME) in the context of tumor diversity. By using multiplex-immunofluorescent staining and single-cell RNA sequencing (scRNA-seq) we unveiled the pan-macrophage marker CD68 as a subgroup-independent negative prognostic marker for survival of ATRT patients. ScRNA-seq analysis of murine ATRT-SHH, ATRT-MYC and extracranial RT (eRT) provide a delineation of the TME, which is predominantly infiltrated by myeloid cells: more specifically a microglia-enriched niche in ATRT-SHH and a bone marrow-derived macrophage infiltration in ATRT-MYC and eRT. Exploring the cell-cell communication of tumor cells with tumor-associated immune cells, we found that Cd68+ tumor-associated macrophages (TAMs) are central to intercellular communication with tumor cells. Moreover, we uncovered distinct tumor phenotypes in murine ATRT-MYC that share genetic traits with TAMs. These intermediary cells considerably increase the intratumoral heterogeneity of ATRT-MYC tumors. In vitro co-culture experiments recapitulated the capability of ATRT-MYC cells to interchange cell material with macrophages extensively, in contrast to ATRT-SHH cells. We found that microglia are less involved in the exchange of information with ATRT cells and that direct contact is a prerequisite for incorporation. A relapse xenograft model implied that intermediary cells are involved in the acquisition of chemotherapy resistance. We show evidence that TAM-tumor cell interaction is one mechanism of chemotherapy resistance and relapse in ATRT.


1976 ◽  
Vol 143 (3) ◽  
pp. 601-614 ◽  
Author(s):  
J W Schrader ◽  
G M Edelman

Cytotoxic T lymphocytes were generated in vitro against H-2 compatible or syngeneic tumor cells. In vitro cytotoxic activity was inhibited by specific anti-H2 sera, suggesting that H-2 antigens are involved in cell lysis. Two observations directly demonstrated the participation of the H-2 antigens on the tumor cells in their lysis by H-2-compatible T cells. First, coating of the H-2 antigens on the target tumor cell reduced the number of cells lysed on subsequent exposure to cytotoxic T cells. Second, when cytotoxic T cells were activated against an H-2 compatible tumor and assayed against an H-2-incompatible tumor, anti-H-2 serum that could bind to the target cell, but not to the cytotoxic lymphocyte, inhibited lysis. H-2 antigens were also shown to be present on the cytotoxic lymphocytes. Specific antisera reacting with these H-2 antigens, but not those of the target cell, failed to inhibit lysis when small numbers of effector cells were assayed against H-2-incompatible target cells or when effector cells of F1-hybrid origin and bearing two H-2 haplotypes were assayed against a tumor cell of one of the parental strains. These findings suggest that it is the H-2 antigens on the tumor cell and not those on the cytotoxic lymphocytes that are important in cell-mediated lysis of H-2-compatible tumor cells.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A122-A122
Author(s):  
Seth Eisenberg ◽  
Amy Powers ◽  
Jason Lohmueller ◽  
James Luketich ◽  
Rajeev Dhupar ◽  
...  

BackgroundChimeric antigen receptors (CAR) have demonstrated remarkable efficacy in licensing T cells for antitumor responses against hematopoietic malignancies but have had limited success against solid tumors. Macrophages, both archetypic phagocytes and professional antigen presenting cells, may exert profound effector functions which complement adaptive cellular immunity.1 Recently, it was shown that human macrophages engineered to express CARs (CAR-Ms) demonstrated antigen-specific phagocytosis, inhibited solid xenograph tumors, and induced an inflammatory tumor microenvironment boosting antitumor T cell responses.2 Kimura et al. previously completed the first prophylactic cancer vaccine trial based on a non-viral antigen, tumor-associated hypoglycosylated Mucin 1 (MUC1).3 A panel of fully-human affinity-matured MUC1-specific antibodies raised in healthy subjects following immunization was identified from these patients.4 Using these MUC1-specific scFv domains for CAR generation, we have now engineered MUC1-targeting CAR-Ms that may potentially possess reduced off-target specificities.MethodsLentiviral CAR expression vectors containing the scFv domains of three unique hypoglycosylated MUC1-specific antibodies or a CD20-specific antibody, the CD3zeta signaling domain, and CD28 and OX40 co-stimulatory domains were constructed. The human monocyte/macrophage U937, SC, and THP-1 lines were stably transduced and flow-sort purified to generate MUC1- or CD20-specific CAR-Ms. CAR-Ms were differentiated into macrophages via 48 hour PMA treatment, and subsequently evaluated for antigen-specific function against MUC1- and/or CD20-expressing K562, ZR-75-1, and Raji cells or cancer cells isolated from solid lung tumors or malignant pleural effusions. CAR-M phenotype was evaluated by flow cytometry following in vitro differentiation and polarization with conventional ‘M1’ and ‘M2’ stimuli. Phagocytosis and lysosomal processing of phagocytosed cargo were evaluated by fluorescence microscopy of GFP/CellTrace labeled targets or detection of pH-sensitive pHrodo expression following CAR-M and tumor cell co-culture, respectively. Antigen-specific cytokine production was determined via cytometric bead array following co-culture of CAR-Ms with MUC1- or CD20-expressing tumor cells or 100mer MUC1 peptide.ResultsDifferentiated CAR-Ms possessed an inflammatory phenotype expressing IL-8 and CD86 which was further enhanced by IFNgamma or LPS treatment and was resistant to ‘M2’ polarization with conventional stimuli. CAR-Ms exhibited phagocytosis and subsequent lysosomal processing in an antigen-specific manner, with minimal reactivity against tumor cell targets in the absence of the corresponding MUC1 or CD20 antigen. MUC1-specific CAR-Ms stimulated with MUC1 peptide or MUC1+ tumor cells secreted robust levels of pro-inflammatory IL-8, TNFa, and IL-1beta, but not immunosuppressive IL-10.ConclusionsMUC1-targeting CAR-Ms exert potent tumor-restricted effector function in vitro and may provide a novel treatment strategy either alone or in potential synergistic combination with T cell-mediated immunotherapies.AcknowledgementsThe authors would like to thank Dr. Olivera J. Finn for generously providing reagents and guidance and Dr. Michael T. Lotze for his mentorship. This study was supported by funding from the University of Pittsburgh’s Department of Cardiothoracic Surgery to ACS and RD.ReferencesWilliams CB, Yeh ES, Soloff AC. Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. Npj Breast Cancer [Internet]. Breast Cancer Research Foundation/Macmillan Publishers Limited; 2016;2:15025. Available from: http://dx.doi.org/10.1038/npjbcancer.2015.25Klichinsky M, Ruella M, Shestova O, Lu XM, Best A, Zeeman M, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020;38:947–53.Kimura T, McKolanis JR, Dzubinski LA, Islam K, Potter DM, Salazar AM, et al. MUC1 Vaccine for Individuals with Advanced Adenoma of the Colon: A Cancer Immunoprevention Feasibility Study. Cancer Prev Res [Internet] 2013;6:18–26. Available from: http://cancerpreventionresearch.aacrjournals.org/content/6/1/18.abstractLohmueller JJ, Sato S, Popova L, Chu IM, Tucker MA, Barberena R, et al. Antibodies elicited by the first non-viral prophylactic cancer vaccine show tumor-specificity and immunotherapeutic potential. Sci Rep 2016;6:31740.Ethics ApprovalThe study was approved by the University of Pittsburgh’s Institutional Review Board approval number CR19120172-005.


1997 ◽  
Vol 186 (12) ◽  
pp. 1985-1996 ◽  
Author(s):  
Qin Yu ◽  
Bryan P. Toole ◽  
Ivan Stamenkovic

To understand how the hyaluronan receptor CD44 regulates tumor metastasis, the murine mammary carcinoma TA3/St, which constitutively expresses cell surface CD44, was transfected with cDNAs encoding soluble isoforms of CD44 and the transfectants (TA3sCD44) were compared with parental cells (transfected with expression vector only) for growth in vivo and in vitro. Local release of soluble CD44 by the transfectants inhibited the ability of endogenous cell surface CD44 to bind and internalize hyaluronan and to mediate TA3 cell invasion of hyaluronan-producing cell monolayers. Mice intravenously injected with parental TA3/St cells developed massive pulmonary metastases within 21–28 d, whereas animals injected with TA3sCD44 cells developed few or no tumors. Tracing of labeled parental and transfectant tumor cells revealed that both cell types initially adhered to pulmonary endothelium and penetrated the interstitial stroma. However, although parental cells were dividing and forming clusters within lung tissue 48 h following injection, >80% of TA3sCD44 cells underwent apoptosis. Although sCD44 transfectants displayed a marked reduction in their ability to internalize and degrade hyaluronan, they elicited abundant local hyaluronan production within invaded lung tissue, comparable to that induced by parental cells. These observations provide direct evidence that cell surface CD44 function promotes tumor cell survival in invaded tissue and that its suppression can induce apoptosis of the invading tumor cells, possibly as a result of impairing their ability to penetrate the host tissue hyaluronan barrier.


Gut ◽  
1998 ◽  
Vol 42 (5) ◽  
pp. 643-649 ◽  
Author(s):  
M Carol ◽  
A Lambrechts ◽  
A Van Gossum ◽  
M Libin ◽  
M Goldman ◽  
...  

Background—Cytokines secreted by intestinal T lymphocytes probably play a critical role in regulation of the gut associated immune responses.Aims—To quantify interferon γ (IFN-γ) and interleukin 4 (IL-4) secreting cells (SC) among human intraepithelial (IEL) and lamina propria (LPL) lymphocytes from the duodenum and right colon in non-pathological situations and in the absence of in vitro stimulation.Patients—Duodenal and right colonic biopsy specimens were obtained from patients with no inflammation of the intestinal mucosa.Methods—Intraepithelial and lamina propria cell suspensions were assayed for numbers of cells spontaneously secreting IFN-γ and IL-4 by a two site reverse enzyme linked immunospot technique (ELISPOT).Results—The relatively high proportion of duodenal lymphocytes spontaneously secreting IFN-γ (IEL 3.6%; LPL 1.9%) and IL-4 (IEL 1.3%; LPL 0.7%) contrasted with the very low numbers of spontaneously IFN-γ SC and the absence of spontaneously IL-4 SC among peripheral blood mononuclear cells. In the basal state, both IFN-γ and IL-4 were mainly produced by CD4+ cells. Within the colon, only 0.2% of IEL and LPL secreted IFN-γ in the basal state, and 0.1% secreted IL-4.Conclusions—Compared with peripheral lymphocytes substantial proportions of intestinal epithelial and lamina propria lymphocytes spontaneously secrete IFN-γ and/or IL-4. These cytokines are probably involved in the normal homoeostasis of the human intestinal mucosa. Disturbances in their secretion could play a role in the pathogenesis of gastrointestinal diseases.


Sign in / Sign up

Export Citation Format

Share Document