scholarly journals Viral population genomics reveals host and infectivity impact on SARS-CoV-2 adaptive landscape

2021 ◽  
Author(s):  
Kaitlyn Gayvert ◽  
Richard Copin ◽  
Sheldon McKay ◽  
Ian Setliff ◽  
Wei Keat Lim ◽  
...  

Public health surveillance, drug treatment development, and optimization of immunological interventions all depend on understanding pathogen adaptation, which differ for specific pathogens. SARS-CoV-2 is an exceptionally successful human pathogen, yet complete understanding of the forces driving its evolution is lacking. Here, we leveraged almost four million SARS-CoV-2 sequences originating mostly from non-vaccinated naive patients to investigate the impact of functional constraints and natural immune pressures on the sequence diversity of the SARS-CoV-2 genome. Overall, we showed that the SARS-CoV-2 genome is under strong and intensifying levels of purifying selection with a minority of sites under diversifying pressure. With a particular focus on the spike protein, we showed that sites under selection were critical for protein stability and virus fitness related to increased infectivity and/or reduced neutralization by convalescent sera. We investigated the genetic diversity of SARS-CoV-2 B and T cell epitopes and determined that the currently known T cell epitope sequences were highly conserved. Outside of the spike protein, we observed that mutations under selection in variants of concern can be associated to beneficial outcomes for the virus. Altogether, the results yielded a comprehensive map of all sites under selection across the entirety of SARS-CoV-2 genome, highlighting targets for future studies to better understand the virus spread, evolution and success.

2021 ◽  
Vol 17 (7) ◽  
pp. e1009248
Author(s):  
Matthias Niemann ◽  
Nils Lachmann ◽  
Kirsten Geneugelijk ◽  
Eric Spierings

The EuroTransplant Kidney Allocation System (ETKAS) aims at allocating organs to patients on the waiting list fairly whilst optimizing HLA match grades. ETKAS currently considers the number of HLA-A, -B, -DR mismatches. Evidently, epitope matching is biologically and clinically more relevant. We here executed ETKAS-based computer simulations to evaluate the impact of epitope matching on allocation and compared the strategies. A virtual population of 400,000 individuals was generated using the National Marrow Donor Program (NMDP) haplotype frequency dataset of 2011. Using this population, a waiting list of 10,400 patients was constructed and maintained during simulation, matching the 2015 Eurotransplant Annual Report characteristics. Unacceptable antigens were assigned randomly relative to their frequency using HLAMatchmaker. Over 22,600 kidneys were allocated in 10 years in triplicate using Markov Chain Monte Carlo simulations on 32-CPU-core cloud-computing instances. T-cell epitopes were calculated using the www.pirche.com portal. Waiting list effects were evaluated against ETKAS for five epitope matching scenarios. Baseline simulations of ETKAS slightly overestimated reported average HLA match grades. The best balanced scenario maintained prioritisation of HLA A-B-DR fully matched donors while replacing the HLA match grade by PIRCHE-II score and exchanging the HLA mismatch probability (MMP) by epitope MMP. This setup showed no considerable impact on kidney exchange rates and waiting time. PIRCHE-II scores improved, whereas the average HLA match grade diminishes slightly, yet leading to an improved estimated graft survival. We conclude that epitope-based matching in deceased donor kidney allocation is feasible while maintaining equal balances on the waiting list.


2016 ◽  
Author(s):  
Juan Ángel Patiño-Galindo ◽  
Fernando González-Candelas

AbstractGenotype 1 of the hepatitis C virus (HCV) is the most prevalent of the variants of this virus. Its two main subtypes, HCV-1a and HCV-1b, are associated to differences in epidemic features and risk groups, despite sharing similar features in most biological properties. We have analyzed the impact of positive selection on the evolution of these variants using complete genome coding regions, and compared the levels of genetic variability and the distribution of positively selected sites. We have also compared the distributions of positively selected and conserved sites considering different factors such as RNA secondary structure, the presence of different epitopes (antibody, CD4 and CD8), and secondary protein structure. Less than 10% of the genome was found to be under positive selection, and purifying selection was the main evolutionary force in both subtypes. We found differences in the number of positively selected sites between subtypes in several genes (Core, HVR2 inE2, P7, helicase inNS3andNS4a).Heterozygosity values in positively selected sites and the rate of non-synonymous substitutions were significantly higher in subtype HCV-1b. Logistic regression analyses revealed that similar selective forces act at the genome level in both subtypes: RNA secondary structure and CD4 T-cell epitopes are associated with conservation, while CD8 T-cell epitopes are associated with positive selection in both subtypes. These results indicate that similar selective constraints are acting along HCV-1a and HCV-1b genomes, despite some differences in the distribution of positively selected sites at independent genes.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Alice Massacci ◽  
Eleonora Sperandio ◽  
Lorenzo D’Ambrosio ◽  
Mariano Maffei ◽  
Fabio Palombo ◽  
...  

Abstract Background Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity. Methods Here, we present an open-source bioinformatic protocol, and a web portal focused on SARS-CoV-2 single mutations and minimal consensus sequence building as a companion vaccine design tool. Furthermore, we provide immunogenomic analyses to understand the impact of the most frequent RBD variations. Results Results on the whole GISAID sequence dataset at the time of the writing (October 2020) reveals an emerging mutation, S477N, located on the central part of the Spike protein Receptor Binding Domain, the Receptor Binding Motif. Immunogenomic analyses revealed some variation in mutated epitope MHC compatibility, T-cell recognition, and B-cell epitope probability for most frequent human HLAs. Conclusions This work provides a framework able to track down SARS-CoV-2 genomic variability.


2008 ◽  
Vol 77 (2) ◽  
pp. 896-903 ◽  
Author(s):  
Rachel M. Stenger ◽  
Martien C. M. Poelen ◽  
Ed E. Moret ◽  
Betsy Kuipers ◽  
Sven C. M. Bruijns ◽  
...  

ABSTRACT P.69 pertactin (P.69 Prn), an adhesion molecule from the causative agent of pertussis, Bordetella pertussis, is present in cellular and most acellular vaccines that are currently used worldwide. Although both humoral immunity and cellular immunity directed against P.69 Prn have been implicated in protective immune mechanisms, the identities of CD4+ T-cell epitopes on the P.69 Prn protein remain unknown. Here, a single I-Ad-restricted B. pertussis conserved CD4+ T-cell epitope at the N terminus of P.69 Prn was identified by using a BALB/c T-cell hybridoma. The epitope appeared immunodominant among four other minor strain-conserved P.69 Prn epitopes recognized after vaccination and B. pertussis infection, and it was capable of evoking a Th1/Th17-type cytokine response. B. pertussis P.69 Prn immune splenocytes did not cross-react with natural variants of the epitope as present in Bordetella parapertussis and Bordetella bronchiseptica. Finally, it was found that the immunodominant P.69 Prn epitope is broadly recognized in the human population by CD4+ T cells in an HLA-DQ-restricted manner. During B. pertussis infection, the epitope was associated with a Th1-type CD4+ T-cell response. Hence, this novel P.69 Prn epitope is involved in CD4+ T-cell immunity after B. pertussis vaccination and infection in mice and, more importantly, in humans. Thus, it may provide a useful tool for the evaluation of the type, magnitude, and maintenance of B. pertussis-specific CD4+ T-cell mechanisms in preclinical and clinical vaccine studies.


2015 ◽  
Vol 89 (20) ◽  
pp. 10303-10318 ◽  
Author(s):  
Justine E. Sunshine ◽  
Brendan B. Larsen ◽  
Brandon Maust ◽  
Ellie Casey ◽  
Wenje Deng ◽  
...  

ABSTRACTTo understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24gagwere generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r= 0.43;P= 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack.IMPORTANCERapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used deep sequencing to comprehensively follow viral evolution over time in six linked HIV transmission pairs. We then mapped T-cell responses to explore if mutations arose due to adaption to the host and found that escape processes were often highly dynamic, with multiple mutations arising within targeted epitopes. When we explored the impact of these mutations on replicative capacity, we found that dynamic escape processes only resolve with the selection of mutations that conferred escape with no fitness cost to the virus. These results provide further understanding of the complicated viral-host interactions that occur during early HIV-1 infection and may help inform the design of future vaccine immunogens.


2018 ◽  
Vol 8 ◽  
Author(s):  
Alberto Grandi ◽  
Laura Fantappiè ◽  
Carmela Irene ◽  
Silvia Valensin ◽  
Michele Tomasi ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253918
Author(s):  
Jelena Repac ◽  
Marija Mandić ◽  
Tanja Lunić ◽  
Bojan Božić ◽  
Biljana Božić Nedeljković

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)–a painful condition characterized by the chronic inflammation of joints—comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 432 ◽  
Author(s):  
Jessica M. van Loben Sels ◽  
Kim Y. Green

Human norovirus (HuNoV) is the leading cause of acute nonbacterial gastroenteritis. Vaccine design has been confounded by the antigenic diversity of these viruses and a limited understanding of protective immunity. We reviewed 77 articles published since 1988 describing the isolation, function, and mapping of 307 unique monoclonal antibodies directed against B cell epitopes of human and murine noroviruses representing diverse Genogroups (G). Of these antibodies, 91, 153, 21, and 42 were reported as GI-specific, GII-specific, MNV GV-specific, and G cross-reactive, respectively. Our goal was to reconstruct the antigenic topology of noroviruses in relationship to mapped epitopes with potential for therapeutic use or inclusion in universal vaccines. Furthermore, we reviewed seven published studies of norovirus T cell epitopes that identified 18 unique peptide sequences with CD4- or CD8-stimulating activity. Both the protruding (P) and shell (S) domains of the major capsid protein VP1 contained B and T cell epitopes, with the majority of neutralizing and HBGA-blocking B cell epitopes mapping in or proximal to the surface-exposed P2 region of the P domain. The majority of broadly reactive B and T cell epitopes mapped to the S and P1 arm of the P domain. Taken together, this atlas of mapped B and T cell epitopes offers insight into the promises and challenges of designing universal vaccines and immunotherapy for the noroviruses.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Julio Alonso-Padilla ◽  
Esther M. Lafuente ◽  
Pedro A. Reche

Epstein-Barr virus is a very common human virus that infects 90% of human adults. EBV replicates in epithelial and B cells and causes infectious mononucleosis. EBV infection is also linked to various cancers, including Burkitt’s lymphoma and nasopharyngeal carcinomas, and autoimmune diseases such as multiple sclerosis. Currently, there are no effective drugs or vaccines to treat or prevent EBV infection. Herein, we applied a computer-aided strategy to design a prophylactic epitope vaccine ensemble from experimentally defined T and B cell epitopes. Such strategy relies on identifying conserved epitopes in conjunction with predictions of HLA presentation for T cell epitope selection and calculations of accessibility and flexibility for B cell epitope selection. The T cell component includes 14 CD8 T cell epitopes from early antigens and 4 CD4 T cell epitopes, targeted during the course of a natural infection and providing a population protection coverage of over 95% and 81.8%, respectively. The B cell component consists of 3 experimentally defined B cell epitopes from gp350 plus 4 predicted B cell epitopes from other EBV envelope glycoproteins, all mapping in flexible and solvent accessible regions. We discuss the rationale for the formulation and possible deployment of this epitope vaccine ensemble.


2004 ◽  
Vol 78 (11) ◽  
pp. 5612-5618 ◽  
Author(s):  
Yue-Dan Wang ◽  
Wan-Yee Fion Sin ◽  
Guo-Bing Xu ◽  
Huang-Hua Yang ◽  
Tin-yau Wong ◽  
...  

ABSTRACT The immunogenicity of HLA-A2-restricted T-cell epitopes in the S protein of the Severe acute respiratory syndrome coronavirus (SARS-CoV) and of human coronavirus strain 229e (HCoV-229e) was analyzed for the elicitation of a T-cell immune response in donors who had fully recovered from SARS-CoV infection. We employed online database analysis to compare the differences in the amino acid sequences of the homologous T epitopes of HCoV-229e and SARS-CoV. The identified T-cell epitope peptides were synthesized, and their binding affinities for HLA-A2 were validated and compared in the T2 cell system. The immunogenicity of all these peptides was assessed by using T cells obtained from donors who had fully recovered from SARS-CoV infection and from healthy donors with no history of SARS-CoV infection. HLA-A2 typing by indirect immunofluorescent antibody staining showed that 51.6% of SARS-CoV-infected patients were HLA-A2 positive. Online database analysis and the T2 cell binding test disclosed that the number of HLA-A2-restricted immunogenic epitopes of the S protein of SARS-CoV was decreased or even lost in comparison with the homologous sequences of the S protein of HCoV-229e. Among the peptides used in the study, the affinity of peptides from HCoV-229e (H77 and H881) and peptides from SARS-CoV (S978 and S1203) for binding to HLA-A2 was higher than that of other sequences. The gamma interferon (IFN-γ) release Elispot assay revealed that only SARS-CoV-specific peptides S1203 and S978 induced a high frequency of IFN-γ-secreting T-cell response in HLA-A2+ donors who had fully recovered from SARS-CoV infection; such a T-cell epitope-specific response was not observed in HLA-A2+ healthy donors or in HLA-A2− donors who had been infected with SARS-CoV after full recovery. Thus, T-cell epitopes S1203 and S978 are immunogenic and elicit an overt specific T-cell response in HLA-A2+ SARS-CoV-infected patients.


Sign in / Sign up

Export Citation Format

Share Document