scholarly journals Optogenetic Manipulation of Cell Migration with High Spatiotemporal Resolution Using Lattice Lightsheet Microscopy

2022 ◽  
Author(s):  
Wei-Chun Tang ◽  
Yen-Ting Liu ◽  
Cheng-Han Yeh ◽  
Yi-Ling Lin ◽  
Yu-Chun Lin ◽  
...  

Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.

2020 ◽  
Vol 6 (40) ◽  
pp. eaba0931
Author(s):  
Wenyu Wang ◽  
Karim Ouaras ◽  
Alexandra L. Rutz ◽  
Xia Li ◽  
Magda Gerigk ◽  
...  

Scalability and device integration have been prevailing issues limiting our ability in harnessing the potential of small-diameter conducting fibers. We report inflight fiber printing (iFP), a one-step process that integrates conducting fiber production and fiber-to-circuit connection. Inorganic (silver) or organic {PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate]} fibers with 1- to 3-μm diameters are fabricated, with the fiber arrays exhibiting more than 95% transmittance (350 to 750 nm). The high surface area–to–volume ratio, permissiveness, and transparency of the fiber arrays were exploited to construct sensing and optoelectronic architectures. We show the PEDOT:PSS fibers as a cell-interfaced impedimetric sensor, a three-dimensional (3D) moisture flow sensor, and noncontact, wearable/portable respiratory sensors. The capability to design suspended fibers, networks of homo cross-junctions and hetero cross-junctions, and coupling iFP fibers with 3D-printed parts paves the way to additive manufacturing of fiber-based 3D devices with multilatitude functions and superior spatiotemporal resolution, beyond conventional film-based device architectures.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaoming Yu ◽  
Meng Zhang ◽  
Shuting Lei

Photopolymerization enables the printing of three-dimensional (3D) objects through successively solidifying liquid photopolymer on two-dimensional (2D) planes. However, such layer-by-layer process significantly limits printing speed, because a large number of layers need to be processed in sequence. In this paper, we propose a novel 3D printing method based on multiphoton polymerization using femtosecond Bessel beam. This method eliminates the need for layer-by-layer processing, and therefore dramatically increases printing speed for structures with high aspect ratios, such as wires and tubes. By using unmodulated Bessel beam, a stationary laser exposure creates a wire with average diameter of 100 μm and length exceeding 10 mm, resulting in an aspect ratio > 100:1. Scanning this beam on the lateral plane fabricates a hollow tube within a few seconds, more than ten times faster than using the layer-by-layer method. Next, we modulate the Bessel beam with a spatial light modulator (SLM) and generate multiple beam segments along the laser propagation direction. Experimentally observed beam pattern agrees with optics diffraction calculation. This 3D printing method can be further explored for fabricating complex structures and has the potential to dramatically increase 3D printing speed while maintaining high resolution.


2019 ◽  
Author(s):  
Andres Flores Valle ◽  
Johannes D. Seelig

Light microscopy on dynamic samples, for example neural activity in the brain, requires imaging large volumes at high rates. Here, we develop a tomography approach for scanning fluorescence microscopy which allows recording volume images at frame scan rates. Volumes are imaged by simultaneously recording four independent projections at different angles using temporally multiplexed, tilted Bessel beams. From the resulting projections, volumes are reconstructed using inverse Radon transforms combined with three dimensional convolutional neural networks (U-net). This tomography approach is suitable for experiments requiring fast volume imaging of sparse samples, as for example often encountered when imaging neural activity in the brain.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Akira Takeda ◽  
Daichi Kobayashi ◽  
Keita Aoi ◽  
Naoko Sasaki ◽  
Yuki Sugiura ◽  
...  

Lymph nodes (LNs) are highly confined environments with a cell-dense three-dimensional meshwork, in which lymphocyte migration is regulated by intracellular contractile proteins. However, the molecular cues directing intranodal cell migration remain poorly characterized. Here we demonstrate that lysophosphatidic acid (LPA) produced by LN fibroblastic reticular cells (FRCs) acts locally to LPA2 to induce T-cell motility. In vivo, either specific ablation of LPA-producing ectoenzyme autotaxin in FRCs or LPA2 deficiency in T cells markedly decreased intranodal T cell motility, and FRC-derived LPA critically affected the LPA2-dependent T-cell motility. In vitro, LPA activated the small GTPase RhoA in T cells and limited T-cell adhesion to the underlying substrate via LPA2. The LPA-LPA2 axis also enhanced T-cell migration through narrow pores in a three-dimensional environment, in a ROCK-myosin II-dependent manner. These results strongly suggest that FRC-derived LPA serves as a cell-extrinsic factor that optimizes T-cell movement through the densely packed LN reticular network.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jiang Lan Fan ◽  
Jose A. Rivera ◽  
Wei Sun ◽  
John Peterson ◽  
Henry Haeberle ◽  
...  

AbstractUnderstanding the structure and function of vasculature in the brain requires us to monitor distributed hemodynamics at high spatial and temporal resolution in three-dimensional (3D) volumes in vivo. Currently, a volumetric vasculature imaging method with sub-capillary spatial resolution and blood flow-resolving speed is lacking. Here, using two-photon laser scanning microscopy (TPLSM) with an axially extended Bessel focus, we capture volumetric hemodynamics in the awake mouse brain at a spatiotemporal resolution sufficient for measuring capillary size and blood flow. With Bessel TPLSM, the fluorescence signal of a vessel becomes proportional to its size, which enables convenient intensity-based analysis of vessel dilation and constriction dynamics in large volumes. We observe entrainment of vasodilation and vasoconstriction with pupil diameter and measure 3D blood flow at 99 volumes/second. Demonstrating high-throughput monitoring of hemodynamics in the awake brain, we expect Bessel TPLSM to make broad impacts on neurovasculature research.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vittorino Lanzio ◽  
Gregory Telian ◽  
Alexander Koshelev ◽  
Paolo Micheletti ◽  
Gianni Presti ◽  
...  

AbstractThe combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity. Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution. State-of-the-art probes are limited by tradeoffs involving their lateral dimension, number of sensors, and ability to access independent stimulation sites. Here, we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices. For the first time, we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches. With this strategy, we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.


Sign in / Sign up

Export Citation Format

Share Document