scholarly journals A Protective Inter-Organ Communication Response Against Life-Threatening Malarial Anemia

2022 ◽  
Author(s):  
Qian Wu ◽  
Euclides Sacomboio ◽  
Lara V Souza ◽  
Rui Martins ◽  
Silvia Cardoso ◽  
...  

Anemia is a clinical hallmark and independent risk factor of malaria caused by Plasmodium spp. infection. While it is known that anemia arises from parasite-induced hemolysis, whether and how host metabolic adaptation to malaria regulate anemia severity is less understood. Here we demonstrate that reprogramming of renal iron (Fe) metabolism is a central component of the host metabolic response regulating the pathogenesis of life-threatening malarial anemia. Renal proximal tubule epithelial cells (RPTEC) are the main cell compartment responsible for Fe storage and recycling during Plasmodium infection in mice. Transcriptional reprogramming of RPTEC couples immune resistance to Plasmodium infection to renal Fe export via the induction of the cellular Fe exporter SLC40A1/ferroportin 1. This integrated defense strategy is essential to deliver Fe to erythroblasts and support compensatory erythropoiesis to prevent the development of life-threatening anemia. Failure to mobilize Fe from RPTEC causes AKI and is associated with life-threatening anemia in P. falciparum-infected individuals. These findings reveal an unexpected role of the kidneys in the control of organismal Fe metabolism during malaria.

2006 ◽  
Vol 291 (6) ◽  
pp. H2875-H2883 ◽  
Author(s):  
Elham Zarrinpashneh ◽  
Karla Carjaval ◽  
Christophe Beauloye ◽  
Audrey Ginion ◽  
Philippe Mateo ◽  
...  

AMP-activated protein kinase (AMPK) is a major sensor and regulator of the energetic state of the cell. Little is known about the specific role of AMPKα2, the major AMPK isoform in the heart, in response to global ischemia. We used AMPKα2-knockout (AMPKα2−/−) mice to evaluate the consequences of AMPKα2 deletion during normoxia and ischemia, with glucose as the sole substrate. Hemodynamic measurements from echocardiography of hearts from AMPKα2−/− mice during normoxia showed no significant modification compared with wild-type animals. In contrast, the response of hearts from AMPKα2−/− mice to no-flow ischemia was characterized by a more rapid onset of ischemia-induced contracture. This ischemic contracture was associated with a decrease in ATP content, lactate production, glycogen content, and AMPKβ2 content. Hearts from AMPKα2−/− mice were also characterized by a decreased phosphorylation state of acetyl-CoA carboxylase during normoxia and ischemia. Despite an apparent worse metabolic adaptation during ischemia, the absence of AMPKα2 does not exacerbate impairment of the recovery of postischemic contractile function. In conclusion, AMPKα2 is required for the metabolic response of the heart to no-flow ischemia. The remaining AMPKα1 cannot compensate for the absence of AMPKα2.


2011 ◽  
Vol 22 (2) ◽  
pp. 128-139
Author(s):  
Linda J. Scheetz

Unintentional injuries are among the leading causes of death and disability in older adults. Although older adults account for approximately 12% of the US population, in 2008, they accounted for 15% of all traffic fatalities, 14% of all vehicle occupant fatalities, and 18% of all pedestrian fatalities. Severely injured older adults have far worse outcomes than younger adults. Despite this difference, many survive with aggressive resuscitation and goal-directed therapy. This article describes the impact of life-threatening injuries in the older adult population, specifically injuries sustained in motor vehicle collisions, and how these injuries relate to anatomic and physiologic changes of aging, the metabolic response to injury, the role of preexisting diseases and medications taken to treat these diseases, and complications.


2016 ◽  
Vol 11 (S 01) ◽  
Author(s):  
T Laeger ◽  
DC Albarado ◽  
L Trosclair ◽  
J Hedgepeth ◽  
CD Morrison

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 977-982
Author(s):  
Mohamed J. Saadh ◽  
Bashar Haj Rashid M ◽  
Roa’a Matar ◽  
Sajeda Riyad Aldibs ◽  
Hala Sbaih ◽  
...  

SARS-COV2 virus causes Coronavirus disease (COVID-19) and represents the causative agent of a potentially fatal disease that is of great global public health concern. The novel coronavirus (2019) was discovered in 2019 in Wuhan, the market of the wet animal, China with viral pneumonia cases and is life-threatening. Today, WHO announces COVID-19 outbreak as a pandemic. COVID-19 is likely to be zoonotic. It is transmitted from bats as intermediary animals to human. Also, the virus is transmitted from human to human who is in close contact with others. The computerized tomographic chest scan is usually abnormal even in those with no symptoms or mild disease. Treatment is nearly supportive; the role of antiviral agents is yet to be established. The SARS-COV2 virus spreads faster than its two ancestors, the SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), but has lower fatality. In this article, we aimed to summarize the transmission, symptoms, pathogenesis, diagnosis, treatment, and vaccine to control the spread of this fatal disease.


Author(s):  
Mohamad Hossein Pourhanifeh ◽  
Kazem Abbaszadeh-Goudarzi ◽  
Mohammad Goodarzi ◽  
Sara G.M. Piccirillo ◽  
Alimohammad Shafiee ◽  
...  

: Melanoma is the most life-threatening and aggressive class of skin malignancies. The incidence of melanoma has steadily increased. Metastatic melanoma is greatly resistant to standard anti-melanomatreatments such as chemotherapy, and 5-year survival rate of cases with melanoma who have metastatic form of disease is less than 10%. The contributing role of apoptosis, angiogenesis and autophagy in the pathophysiology of melanoma has been previously demonstrated. Thus, it is extremely urgent to search for complementary therapeutic approachesthat couldenhance the quality of life of subjects and reduce treatment resistance and adverse effects. Resveratrol, known as a polyphenol component present in grapes and some plants, has anti-cancer properties due to its function as an apoptosis inducer in tumor cells, and anti-angiogenic agent to prevent metastasis. However, more clinical trials should be conducted to prove resveratrol efficacy. : Herein, for first time, we summarize current knowledge of anti-cancerous activities of resveratrol in melanoma.


2021 ◽  
Vol 11 (4) ◽  
pp. 1696
Author(s):  
Mario Giosuè Balzanelli ◽  
Pietro Distratis ◽  
Orazio Catucci ◽  
Angelo Cefalo ◽  
Rita Lazzaro ◽  
...  

Due to the promising effects of mesenchymal stem cells (MSCs) in the treatment of various diseases, this commentary aimed to focus on the auxiliary role of MSCs to reduce inflammatory processes of acute respiratory infections caused by the 2019 novel coronavirus (COVID-19). Since early in 2020, COVID-19, a consequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly affected millions of people world-wide. The SARS-CoV-2 infection in children appears to be an unusual event. Despite the high number of affected adult and elderly, children and adolescents remained low in amounts, and marginally touched. Based on the promising role of cell therapy and regenerative medicine approaches in the treatment of several life-threatening diseases, it seems that applying MSCs cell-based approaches can also be a hopeful strategy for improving subjects with severe acute respiratory infections caused by COVID-19.


2021 ◽  
Vol 11 (3) ◽  
pp. 219
Author(s):  
Ya-Ling Yang ◽  
Yen-Hsiang Chang ◽  
Chia-Jung Li ◽  
Ying-Hsien Huang ◽  
Ming-Chao Tsai ◽  
...  

Hepatocellular carcinoma (HCC) remains one of the most lethal human cancer globally. For advanced HCC, curable plan for advanced HCC is yet to be established, and the prognosis remains poor. The detail mechanisms underlying the progression of HCC tumorigenicity and the corruption of tumor microenvironment (TME) is complex and inconclusive. A growing body of studies demonstrate microRNAs (miRs) are important regulators in the tumorigenicity and TME development. Notably, mounting evidences indicate miR-29a play a crucial role in exerting hepatoprotective effect on various types of stress and involved in the progression of HCC, which elucidates their potential theragnostic implications. In this review, we reviewed the advanced insights into the detail mechanisms by which miR-29a dictates carcinogenesis, epigenetic program, and metabolic adaptation, and implicated in the sponging activity of competitive endogenous RNAs (ceRNA) and the TME components in the scenario of HCC. Furthermore, we highlighted its clinical significance in diagnosis and prognosis, as well as the emerging therapeutics centered on the activation of miR-29a.


Author(s):  
Thomas Luft ◽  
Peter Dreger ◽  
Aleksandar Radujkovic

AbstractAllogeneic hematopoietic stem cell transplantation (alloSCT) carries the promise of cure for many malignant and non-malignant diseases of the lympho-hematopoietic system. Although outcome has improved considerably since the pioneering Seattle achievements more than 5 decades ago, non-relapse mortality (NRM) remains a major burden of alloSCT. There is increasing evidence that endothelial dysfunction is involved in many of the life-threatening complications of alloSCT, such as sinusoidal obstruction syndrome/venoocclusive disease, transplant-associated thrombotic microangiopathy, and refractory acute graft-versus host disease. This review delineates the role of the endothelium in severe complications after alloSCT and describes the current status of search for biomarkers predicting endothelial complications, including markers of endothelial vulnerability and markers of endothelial injury. Finally, implications of our current understanding of transplant-associated endothelial pathology for prevention and management of complications after alloSCT are discussed.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 536
Author(s):  
Christian Osterburg ◽  
Susanne Osterburg ◽  
Huiqing Zhou ◽  
Caterina Missero ◽  
Volker Dötsch

The p63 gene encodes a master regulator of epidermal commitment, development, and differentiation. Heterozygous mutations in the DNA binding domain cause Ectrodactyly, Ectodermal Dysplasia, characterized by limb deformation, cleft lip/palate, and ectodermal dysplasia while mutations in in the C-terminal domain of the α-isoform cause Ankyloblepharon-Ectodermal defects-Cleft lip/palate (AEC) syndrome, a life-threatening disorder characterized by skin fragility, severe, long-lasting skin erosions, and cleft lip/palate. The molecular disease mechanisms of these syndromes have recently become elucidated and have enhanced our understanding of the role of p63 in epidermal development. Here we review the molecular cause and functional consequences of these p63-mutations for skin development and discuss the consequences of p63 mutations for female fertility.


Sign in / Sign up

Export Citation Format

Share Document