scholarly journals Infant Weight Gain Trajectories Linked to Oral Microbiome Composition

2017 ◽  
Author(s):  
Sarah J. C. Craig ◽  
Daniel Blankenberg ◽  
Alice Carla Luisa Parodi ◽  
Ian M. Paul ◽  
Leann L. Birch ◽  
...  

ABSTRACTGut and oral microbiome perturbations have been observed in obese adults and adolescents. Less is known about how weight gain in early childhood is influenced by gut, and particularly oral, microbiomes. Here we analyze the relationships among weight gain and gut and oral microbiomes in 226 two-year-olds who were followed during the first two years of life, as part of a larger study, with weight and length measured at seven time points. We used these data to identify children with rapid weight gain (a strong risk factor for childhood obesity), and to derive growth curves with novel Functional Data Analysis (FDA) techniques. The children’s oral and gut microbiomes were sampled at the end of the two-year period, and surveyed with 16S sequencing. First, we show that growth curves are associated negatively with diversity and positively with Firmicutes-to-Bacteroidetes ratio of the oral microbiome – a relationship that is also observed in children with rapid (vs. non-rapid) weight gain. We also demonstrate an association between the gut microbiome and child growth, but only when considering the effect of diet on the microbiome. Lastly, we identify several bacterial genera that are associated with child growth patterns. These results suggest that by the age of two, the oral microbiome may have already begun to establish patterns often seen in older obese individuals. They also suggest that the gut microbiome, while strongly influenced by diet, at age two does not harbor obesity signatures many researchers identified in later life stages.

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0248322
Author(s):  
Cassandra Velasco ◽  
Christopher Dunn ◽  
Cassandra Sturdy ◽  
Vladislav Izda ◽  
Jake Martin ◽  
...  

Objective Adult elastic cartilage has limited repair capacity. MRL/MpJ (MRL) mice, by contrast, are capable of spontaneously healing ear punctures. This study was undertaken to characterize microbiome differences between healer and non-healer mice and to evaluate whether this healing phenotype can be transferred via gut microbiome transplantation. Methods We orally transplanted C57BL/6J (B6) mice with MRL/MpJ cecal contents at weaning and as adults (n = 57) and measured ear hole closure 4 weeks after a 2.0mm punch and compared to vehicle-transplanted MRL and B6 (n = 25) and B6-transplanted MRL (n = 20) mice. Sex effects, timing of transplant relative to earpunch, and transgenerational heritability were evaluated. In a subset (n = 58), cecal microbiomes were profiled by 16S sequencing and compared to ear hole closure. Microbial metagenomes were imputed using PICRUSt. Results Transplantation of B6 mice with MRL microbiota, either in weanlings or adults, improved ear hole closure. B6-vehicle mice healed ear hole punches poorly (0.25±0.03mm, mm ear hole healing 4 weeks after a 2mm ear hole punch [2.0mm—final ear hole size], mean±SEM), whereas MRL-vehicle mice healed well (1.4±0.1mm). MRL-transplanted B6 mice healed roughly three times as well as B6-vehicle mice, and half as well as MRL-vehicle mice (0.74±0.05mm, P = 6.9E-10 vs. B6-vehicle, P = 5.2E-12 vs. MRL-vehicle). Transplantation of MRL mice with B6 cecal material did not reduce MRL healing (B6-transplanted MRL 1.3±0.1 vs. MRL-vehicle 1.4±0.1, p = 0.36). Transplantation prior to ear punch was associated with the greatest ear hole closure. Offspring of transplanted mice healed significantly better than non-transplanted control mice (offspring:0.63±0.03mm, mean±SEM vs. B6-vehicle control:0.25±0.03mm, n = 39 offspring, P = 4.6E-11). Several microbiome clades were correlated with healing, including Firmicutes (R = 0.84, P = 8.0E-7), Lactobacillales (R = 0.65, P = 1.1E-3), and Verrucomicrobia (R = -0.80, P = 9.2E-6). Females of all groups tended to heal better than males (B6-vehicle P = 0.059, MRL-transplanted B6 P = 0.096, offspring of MRL-transplanted B6 P = 0.0038, B6-transplanted MRL P = 1.6E-6, MRL-vehicle P = 0.0031). Many clades characteristic of female mouse cecal microbiota vs. males were the same as clades characteristic of MRL and MRL-transplanted B6 mice vs. B6 controls, including including increases in Clostridia and reductions in Verrucomicrobia in female mice. Conclusion In this study, we found an association between the microbiome and tissue regeneration in MRL mice and demonstrate that this trait can be transferred to non-healer mice via microbiome transplantation. We identified several microbiome clades associated with healing.


2021 ◽  
Author(s):  
Modupe Coker ◽  
Rebecca Lebeaux ◽  
Anne Hoen ◽  
Yuka Moroishi ◽  
Diane Gilbert-Diamond ◽  
...  

Abstract Several studies have shown that body mass index is strongly associated with differences in gut microbiota, but the relationship between body weight and oral microbiota is less clear. Among more than 200 toddlers in the New Hampshire Birth Cohort Study, we characterized the association between multiple anthropometric measures of body mass/growth longitudinally and used shotgun metagenomics to taxonomically and functionally profile the oral microbiome. We found that within-sample diversity was inversely related to body mass measurements while community composition was not associated. Certain taxa were consistently associated with growth and modified by sex. Functional examination also showed concordance between microbial metabolic pathways and child growth metrics. Further exploration of the functional significance of this relationship will enhance our understanding of the intersection between weight gain, microbiota, and energy metabolism and the potential role of these relationships on the onset of obesity-associated diseases in later life.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Sandra Mrozinska ◽  
Piotr Radkowski ◽  
Tomasz Gosiewski ◽  
Magdalena Szopa ◽  
Malgorzata Bulanda ◽  
...  

Background. Type 2 diabetes mellitus (T2DM) is determined by genetic and environmental factors. There have been many studies on the relationship between the composition of the gastrointestinal bacterial flora, T2DM, and obesity. There are no data, however, on the gut microbiome structure in monogenic forms of the disease including Maturity Onset Diabetes of the Young (MODY).Methods. The aim of the investigation was to compare the qualitative parameters of the colonic flora in patients with HNF1A-MODY and T2DM and healthy individuals. 16S sequencing of bacterial DNA isolated from the collected fecal samples using the MiSeq platform was performed.Results. There were significant between-group differences in the bacterial profile. At the phylum level, the amount of Proteobacteria was higher (p=0.0006) and the amount of Bacteroidetes was lower (p=0.0005) in T2DM group in comparison to the control group. In HNF1A-MODY group, the frequency of Bacteroidetes was lower than in the control group (p=0.0143). At the order level, Turicibacterales was more abundant in HNF1A-MODY group than in T2DM group.Conclusions. It appears that there are differences in the gut microbiome composition between patients with HNF1A-MODY and type 2 diabetes. Further investigation on this matter should be conducted.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petri Vänni ◽  
Mysore V. Tejesvi ◽  
Sofia Ainonen ◽  
Marjo Renko ◽  
Katja Korpela ◽  
...  

AbstractDelivery mode and perinatal antibiotics influence gut microbiome composition in children. Most microbiome studies have used the sequencing of the bacterial 16S marker gene but have not reported the metabolic function of the gut microbiome, which may mediate biological effects on the host. Here, we used the PICRUSt2 bioinformatics tool to predict the functional profiles of the gut microbiome based on 16S sequencing in two child cohorts. Both Caesarean section and perinatal antibiotics markedly influenced the functional profiles of the gut microbiome at the age of 1 year. In machine learning analysis, bacterial fatty acid, phospholipid, and biotin biosynthesis were the most important pathways that differed according to delivery mode. Proteinogenic amino acid biosynthesis, carbohydrate degradation, pyrimidine deoxyribonucleotide and biotin biosynthesis were the most important pathways differing according to antibiotic exposure. Our study shows that both Caesarean section and perinatal antibiotics markedly influence the predicted metabolic profiles of the gut microbiome at the age of 1 year.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yale Deng ◽  
Fotini Kokou ◽  
Ep H. Eding ◽  
Marc C. J. Verdegem

Abstract Background Fish gut microbial colonisation starts during larval stage and plays an important role in host’s growth and health. To what extent first colonisation could influence the gut microbiome succession and growth in later life remains unknown. In this study, Nile tilapia embryos were incubated in two different environments, a flow-through system (FTS) and a biofloc system (BFS); hatched larvae were subsequently cultured in the systems for 14 days of feeding (dof). Fish were then transferred to one common recirculating aquaculture system (RAS1, common garden, 15–62 dof), followed by a growth trial in another RAS (RAS2, growth trial, 63–105 dof). In RAS2, fish were fed with two types of diet, differing in non-starch polysaccharide content. Our aim was to test the effect of rearing environment on the gut microbiome development, nutrient digestibility and growth performance of Nile tilapia during post-larvae stages. Results Larvae cultured in the BFS showed better growth and different gut microbiome, compared to FTS. After the common garden, the gut microbiome still showed differences in species composition, while body weight was similar. Long-term effects of early life rearing history on fish gut microbiome composition, nutrient digestibility, nitrogen and energy balances were not observed. Still, BFS-reared fish had more gut microbial interactions than FTS-reared fish. A temporal effect was observed in gut microbiome succession during fish development, although a distinct number of core microbiome remained present throughout the experimental period. Conclusion Our results indicated that the legacy effect of first microbial colonisation of the fish gut gradually disappeared during host development, with no differences in gut microbiome composition and growth performance observed in later life after culture in a common environment. However, early life exposure of larvae to biofloc consistently increased the microbial interactions in the gut of juvenile Nile tilapia and might possibly benefit gut health.


Medicines ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 34
Author(s):  
Jeralyn Franson ◽  
Julianne Grose ◽  
Kaitlyn Larson ◽  
Laura Bridgewater

Background: Metabolic phenotypes are the result of an intricate interplay between multiple factors, including diet, genotype, and the gut microbiome. Per–Arnt–Sim (PAS) kinase is a nutrient-sensing serine/threonine kinase, whose absence (PASK−/−) protects against triglyceride accumulation, insulin resistance, and weight gain on a high-fat diet; conditions that are associated with dysbiosis of the gut microbiome. Methods: Herein, we report the metabolic effects of the interplay of diet (high fat high sugar, HFHS), genotype (PASK−/−), and microbiome (16S sequencing). Results: Microbiome analysis identified a diet-induced, genotype-independent forked shift, with two discrete clusters of HFHS mice having increased beta and decreased alpha diversity. A “lower” cluster contained elevated levels of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Defferibacteres, and was associated with increased weight gain, glucose intolerance, triglyceride accumulation, and decreased claudin-1 expression. Genotypic effects were observed within the clusters, lower cluster PASK−/− mice displayed increased weight gain and decreased triglyceride accumulation, whereas upper PASK−/− were resistant to decreased claudin-1. Conclusions: These results confirm previous reports that PAS kinase deficiency can protect mice against the deleterious effects of diet, and they suggest that microbiome imbalances can override protection. In addition, these results support a healthy diet for beneficial microbiome maintenance and suggest microbial culprits associated with metabolic disease.


2019 ◽  
Vol 13 (1) ◽  
pp. 71-72
Author(s):  
Kristy A. Bolton ◽  
Peter Kremer ◽  
Jazzmin Miaobing Zheng ◽  
Kylie D. Hesketh ◽  
Rachel Laws ◽  
...  

Author(s):  
Mohammed R Islam ◽  
Kimberly A Schultz ◽  
Mita Varghese ◽  
Simin H Abrishami ◽  
Jason S Villano ◽  
...  

Understanding how differences in animal husbandry practices affect the reproducibility of research results is critical. Wesought to understand how different beddings might influence dietary obesity studies. We compared the effects of paper andcorncob bedding on weight gain, metabolism, and gut microbiome (GM) of mice fed a high-fat diet (HFD) or a normal diet(ND) and evaluated effects on fecal and cecal microbiomes collected from these cohorts after euthanasia. Male C57BL/6J mice at 5 wk age were allowed to acclimate to the facility and the assigned bedding for one week before being placed on HFD or remaining on the ND for 12 wk. Fecal pellets and cecal samples were collected and frozen for batched 16S sequencing. Mice had similar body weight, visceral gonadal white adipose tissue (GWAT), subcutaneous inguinal white adipose tissue (IWAT), liver and spleen weights and metabolic changes regardless of the bedding type. Baseline microbiota differences were detected one week after bedding assignment. After 12 wk, the GM showed significant differences depending on both bedding and diet. The effects of the bedding were not significantly different between endpoint fecal and cecal GM, despite the inherent differences in microbiota in fecal and cecal samples. A correlation was detected between diet and the relative abundance of Bacteroidetes and Verrucomicrobia:Akkermansia. In conclusion, this study demonstrates the importance of considering bedding type when performing dietary experiments.


2019 ◽  
Author(s):  
Vanessa Stadlbauer ◽  
Lara Engertsberger ◽  
Irina Komarova ◽  
Nicole Feldbacher ◽  
Bettina Leber ◽  
...  

Abstract Background: Dementia is an increasing public health threat worldwide. The pathogenesis of dementia has not been fully elucidated yet. Inflammatory processes are hypothesized to play an important role as a driver for cognitive decline but the origin of inflammation is not clear. We hypothesize that disturbances in gut microbiome composition, gut barrier dysfunction, bacterial translocation and resulting inflammation are associated with cognitive dysfunction in dementia. Methods: To test this hypothesis, a cohort of 23 patients with dementia and 18 age and sex matched controls without cognitive impairments were studied. Gut microbiome composition, gut barrier dysfunction, bacterial translocation and inflammation were assessed from stool and serum samples. Malnutrition was assessed by Mini Nutritional Assessment Short Form (MNA-SF), detailed information on drug use was collected. Microbiome composition was assessed by 16s sequencing, QIIME 2 and Calypso 7.14 tools. Results: Dementia was associated with dysbiosis characterized by differences in beta diversity and changes in taxonomic composition. Gut permeability was increased as evidenced by increased serum diamine oxidase levels and systemic inflammation was confirmed by increased soluble cluster of differentiation 14 levels (sCD14). BMI and statin use use had the strongest impact on microbiome composition.Conclusion: Dementia is associated with changes in gut microbiome composition and increased biomarkers of gut permeability and inflammation. Lachnospiraceae NK4A136 group as a potentially butyrate producing bacterial strain was reduced in dementia. Malnutrition and drug intake were factors, that impact on microbiome composition and function. Increasing butyrate producing bacteria and targeting malnutrition may be promising therapeutic targets in dementia.Trial Registration: NCT03167983


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3013
Author(s):  
John A. Bouranis ◽  
Laura M. Beaver ◽  
Jaewoo Choi ◽  
Carmen P. Wong ◽  
Duo Jiang ◽  
...  

Isothiocyanates, such as sulforaphane and iberin, derived from glucosinolates (GLS) in cruciferous vegetables, are known to prevent and suppress cancer development. GLS can also be converted by bacteria to biologically inert nitriles, such as sulforaphane-nitrile (SFN-NIT) and iberin-nitrile (IBN-NIT), but the role of the gut microbiome in this process is relatively undescribed and SFN-NIT excretion in humans is unknown. An ex vivo fecal incubation model with in vitro digested broccoli sprouts and 16S sequencing was utilized to explore the role of the gut microbiome in SFN- and IBN-NIT production. SFN-NIT excretion was measured among human subjects following broccoli sprout consumption. The fecal culture model showed high inter-individual variability in nitrile production and identified two sub-populations of microbial communities among the fecal cultures, which coincided with a differing abundance of nitriles. The Clostridiaceae family was associated with high levels, while individuals with a low abundance of nitriles were more enriched with taxa from the Enterobacteriaceae family. High levels of inter-individual variation in urine SFN-NIT levels were also observed, with peak excretion of SFN-NIT at 24 h post broccoli sprout consumption. These results suggest that nitrile production from broccoli, as opposed to isothiocyanates, could be influenced by gut microbiome composition, potentially lowering efficacy of cruciferous vegetable interventions.


Sign in / Sign up

Export Citation Format

Share Document