scholarly journals A Web-resource for Nutrient Use Efficiency related Genes, QTLs, and microRNA in important cereals and model plants

2017 ◽  
Author(s):  
Anuj Kumar ◽  
Ajay Pandeya ◽  
Girik Malik ◽  
Kumari P Hima ◽  
Kumar S Anil ◽  
...  

ABSTRACTCereals are the key contributors to global food security. Genes involved in uptake (transport), assimilation and utilization of macro- and micro-nutrients are responsible for their content in grain and straw. Although many cereal genomic databases are available, currently there is no cohesive web-resource of manually curated nutrient use efficiency (NtUE) related genes and QTLs, etc. In this study, we present a web-resource containing information on NtUE related genes/QTLs and the corresponding available microRNAs for some of these genes in four major cereal crops [wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare)], two alien species (Triticum urartu and Aegilops tauschii) related to wheat, and two model species including Brachypodium distachyon and Arabidopsis thaliana. Gene annotations integrated in the current web-resource were collected from the existing databases and the available literature. The primary goal of developing this web-resource is to provide descriptions of the NtUE related genes and their functional annotation. MicroRNA targeting some of the NtUE related genes and the quantitative trait loci (QTLs) for NtUE related traits are also included. The available information in the web-resource should help the users to readily search the desired information.Web-resource URLhttp://bioclues.org/NtUE/

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 673 ◽  
Author(s):  
Anuj Kumar ◽  
Ajay Pandeya ◽  
Girik Malik ◽  
Mansi Sharma ◽  
Hima Kumari P. ◽  
...  

Cereals are key contributors to global food security. Genes involved in the uptake (transport), assimilation and utilization of macro- and micronutrients are responsible for the presence of these nutrients in grain and straw. Although many genomic databases for cereals are available, there is currently no cohesive web resource of manually curated nutrient use efficiency (NtUE)-related genes and quantitative trait loci (QTLs). In this study, we present a web-resource containing information on NtUE-related genes/QTLs and the corresponding available microRNAs for some of these genes in four major cereal crops (wheat (Triticum aestivum), rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare)), two alien species related to wheat (Triticum urartu and Aegilops tauschii), and two model species (Brachypodium distachyon and Arabidopsis thaliana). Gene annotations integrated in the current web resource were manually curated from the existing databases and the available literature. The primary goal of developing this web resource is to provide descriptions of the NtUE-related genes and their functional annotation. MicroRNAs targeting some of the NtUE related genes and the QTLs for NtUE-related traits are also included. The genomic information embedded in the web resource should help users to search for the desired information.


Author(s):  
Rabin Thapa ◽  
Nabin Bhusal

Rice (Oryza sativa L.) has been cultivated as an important cereal crop for more than 9,000 years and more than half of the world’s population depend on rice as it is their primary source of energy. Almost 30% of the current world cereal production is represented by the rice alone. It is estimated that the world’s population will reach 9.1 billion by 2050 i.e. 34 percent higher than today and for ensuring an ample amount of food and nutrition to such large population, global consumption of cereals will need to increase from 2.6 to 2.9 billion tonnes by 2027. On the other hand, the impacts of climate change in agriculture are expected to be negative, threatening the global food security. Besides, agriculture and global food security will be severely affected due to the COVID-19 pandemics as its after-effects are yet to be ascertained. The world needs an introduction of a new “Green revolution” in agriculture to increase crop production for food security and biofuel, because conventional breeding method have not brought much of gains not keeping its pace with the world population growth. Hence, the current study was done to review the various ongoing approaches and possible ways of designing a rice with enhanced productivity and photosynthetic capacity. One of the ways to increase yields, photosynthetic capacity accompanied by an increased Water Use Efficiency (WUE) and Nutrient Use Efficiency could be to introduce C4 traits into rice. Besides, genetic engineering using CRISPR-Cas9, molecular breeding, developing ideotype, heterosis breeding, developing apomictic rice, nitrogen fixing rice, use of nanotechnology as well as precision farming are the probable future approaches for designing a rice with high productivity. However, there are challenges and limitations in developing such rice and further research in this matter could help us get closer to developing the future rice.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


2019 ◽  
Vol 7 (3) ◽  
pp. 368-377 ◽  
Author(s):  
Zilhas Ahmed Jewel ◽  
Jauhar Ali ◽  
Yunlong Pang ◽  
Anumalla Mahender ◽  
Bart Acero ◽  
...  

2007 ◽  
Vol 62 (1) ◽  
pp. 1-12 ◽  
Author(s):  
C. L. Marley ◽  
R. Fychan ◽  
M. D. Fraser ◽  
R. Sanderson ◽  
R. Jones

Sign in / Sign up

Export Citation Format

Share Document