scholarly journals Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation

2017 ◽  
Author(s):  
Guadalupe Sepulveda ◽  
Mark Antkowiak ◽  
Ingrid Brust-Mascher ◽  
Karan Mahe ◽  
Tingyoung Ou ◽  
...  

AbstractAs microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near the centrosome, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Guadalupe Sepulveda ◽  
Mark Antkowiak ◽  
Ingrid Brust-Mascher ◽  
Karan Mahe ◽  
Tingyoung Ou ◽  
...  

As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism.


1990 ◽  
Vol 97 (2) ◽  
pp. 259-271
Author(s):  
B. Buendia ◽  
C. Antony ◽  
F. Verde ◽  
M. Bornens ◽  
E. Karsenti

A monoclonal antibody (CTR2611) raised against centrosomes isolated from human lymphocytes (KE37) stains the pericentriolar material and intermediate filaments in the same cells. In MDCK cells, where most of the microtubules do not originate from the pericentriolar region during interphase, the antigen is distributed along intermediate filaments. At the onset of mitosis, a large fraction of the CTR2611 antigen associates with the minus-end domain of the microtubules of the mitotic spindle but not with the pericentriolar region itself. Treatment of mitotic MDCK cells with taxol leads to the assembly of many microtubule asters in the cytoplasm at the expense of the mitotic spindle. The CTR2611 antigen is present in the center of each of these asters. Similar asters can also be produced in vitro by adding taxol to concentrated Xenopus egg mitotic cytoplasm. Again, the antigen is found close to the center of the asters. These results suggest that CTR2611 antigen is associated with a material involved in microtubule nucleation or microtubule minus-end stabilization. The monoclonal antibody recognizes a 74 × 10(3) Mr polypeptide and other polypeptides at 120 × 10(3) Mr and 170 × 10(3) Mr. The 74 × 10(3) Mr polypeptide is found in all species examined so far, suggesting that it contains a highly conserved epitope.


1997 ◽  
Vol 138 (5) ◽  
pp. 1055-1066 ◽  
Author(s):  
Tirso Gaglio ◽  
Mary A. Dionne ◽  
Duane A. Compton

The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420–425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.


2020 ◽  
Author(s):  
Lisa Stenzel ◽  
Judith Mehler ◽  
Alina Schreiner ◽  
Sim Üstüner ◽  
Elisa Zuccoli ◽  
...  

ABSTRACTCorrect cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, proteins that anchor the PCM to the centrioles are less known. Here we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans.We demonstrate that centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. While the most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 is bridging the centrioles and PCM scaffold through protein-protein interactions with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 is able to selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is sufficient to anchor the PCM scaffold proteins to the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.


2021 ◽  
Vol 220 (2) ◽  
Author(s):  
Takumi Chinen ◽  
Kaho Yamazaki ◽  
Kaho Hashimoto ◽  
Ken Fujii ◽  
Koki Watanabe ◽  
...  

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. Here, we show the cooperative roles of the centriole and PCM scaffold proteins, pericentrin and CDK5RAP2, in the recruitment of CEP192 to spindle poles during mitosis. Systematic depletion of PCM proteins revealed that CEP192, but not pericentrin and/or CDK5RAP2, was crucial for bipolar spindle assembly in HeLa, RPE1, and A549 cells with centrioles. Upon double depletion of pericentrin and CDK5RAP2, CEP192 that remained at centriole walls was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the perturbation of PLK1, a critical kinase for PCM assembly, efficiently suppressed bipolar spindle formation in mitotic cells with one centrosome. Overall, these data suggest that the centriole and PCM scaffold proteins cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation.


2011 ◽  
Vol 193 (4) ◽  
pp. 727-739 ◽  
Author(s):  
Won-Jing Wang ◽  
Rajesh Kumar Soni ◽  
Kunihiro Uryu ◽  
Meng-Fu Bryan Tsou

Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were “infertile,” indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.


2013 ◽  
Vol 451 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Yuko Iwakiri ◽  
Sachiko Kamakura ◽  
Junya Hayase ◽  
Hideki Sumimoto

Bipolar spindle assembly in mitotic cells is a prerequisite to ensure correct alignment of chromosomes for their segregation to each daughter cell; spindle microtubules are tethered at plus ends to chromosomes and focused at minus ends to either of the two spindle poles. NuMA (nuclear mitotic apparatus protein) is present solely in the nucleus in interphase cells, but relocalizes during mitosis to the spindle poles to play a crucial role in spindle assembly via focusing spindle microtubules to each pole. In the present study we show that the kinesin-5 family motor Eg5 is a protein that directly interacts with NuMA, using a proteomics approach and various binding assays both in vivo and in vitro. During mitosis Eg5 appears to interact with NuMA in the vicinity of the spindle poles, whereas the interaction does not occur in interphase cells, where Eg5 is distributed throughout the cytoplasm but NuMA exclusively localizes to the nucleus. Slight, but significant, depletion of Eg5 in HeLa cells by RNA interference results in formation of less-focused spindle poles with misaligned chromosomes in metaphase; these phenotypes are similar to those induced by depletion of NuMA. Since NuMA is less accumulated at the spindle poles in Eg5-depleted cells, Eg5 probably contributes to spindle assembly via regulating NuMA localization. Furthermore, depletion of cytoplasmic dynein induces mislocalization of NuMA and phenotypes similar to those observed in NuMA-depleted cells, without affecting Eg5 localization to the spindles. Thus dynein appears to control NuMA function in conjunction with Eg5.


2020 ◽  
Author(s):  
Takumi Chinen ◽  
Kaho Yamazaki ◽  
Kaho Hashimoto ◽  
Ken Fujii ◽  
Koki Watanabe ◽  
...  

The pericentriolar material (PCM) that accumulates around the centriole expands during mitosis and nucleates microtubules. While centrosomes facilitate bipolar spindle formation, the individual functions of the centriole and PCM in mitosis remain elusive. Herein, we show the redundant roles of the centriole and PCM in bipolar spindle formation in human cells. Upon depletion of the PCM scaffold components, pericentrin and CDK5RAP2, centrioles remained able to recruit CEP192 onto their walls, which was sufficient for bipolar spindle formation. In contrast, through centriole removal, we found that pericentrin and CDK5RAP2 recruited CEP192 at the acentriolar spindle pole and facilitated bipolar spindle formation in mitotic cells with one centrosome. Furthermore, the chemical perturbation of polo-like kinase 1, a critical kinase for PCM assembly, efficiently suppressed the proliferation of various cancer cell lines from which centrioles were removed. Overall, these data suggest that the centriole and PCM cooperatively recruit CEP192 to spindle poles and facilitate bipolar spindle formation in human cells.


1999 ◽  
Vol 147 (2) ◽  
pp. 335-350 ◽  
Author(s):  
Frank R. Cottingham ◽  
Larisa Gheber ◽  
Dana L. Miller ◽  
M. Andrew Hoyt

The single cytoplasmic dynein and five of the six kinesin-related proteins encoded by Saccharomyces cerevisiae participate in mitotic spindle function. Some of the motors operate within the nucleus to assemble and elongate the bipolar spindle. Others operate on the cytoplasmic microtubules to effect spindle and nuclear positioning within the cell. This study reveals that kinesin-related Kar3p and Kip3p are unique in that they perform roles both inside and outside the nucleus. Kar3p, like Kip3p, was found to be required for spindle positioning in the absence of dynein. The spindle positioning role of Kar3p is performed in concert with the Cik1p accessory factor, but not the homologous Vik1p. Kar3p and Kip3p were also found to overlap for a function essential for the structural integrity of the bipolar spindle. The cytoplasmic and nuclear roles of both these motors could be partially substituted for by the microtubule-destabilizing agent benomyl, suggesting that these motors perform an essential microtubule-destabilizing function. In addition, we found that yeast cell viability could be supported by as few as two microtubule-based motors: the BimC-type kinesin Cin8p, required for spindle structure, paired with either Kar3p or Kip3p, required for both spindle structure and positioning.


1993 ◽  
Vol 123 (4) ◽  
pp. 849-858 ◽  
Author(s):  
E A Vaisberg ◽  
M P Koonce ◽  
J R McIntosh

The formation and functioning of a mitotic spindle depends not only on the assembly/disassembly of microtubules but also on the action of motor enzymes. Cytoplasmic dynein has been localized to spindles, but whether or how it functions in mitotic processes is not yet known. We have cloned and expressed DNA fragments that encode the putative ATP-hydrolytic sites of the cytoplasmic dynein heavy chain from HeLa cells and from Dictyostelium. Monospecific antibodies have been raised to the resulting polypeptides, and these inhibit dynein motor activity in vitro. Their injection into mitotic mammalian cells blocks the formation of spindles in prophase or during recovery from nocodazole treatment at later stages of mitosis. Cells become arrested with unseparated centrosomes and form monopolar spindles. The injected antibodies have no detectable effect on chromosome attachment to a bipolar spindle or on motions during anaphase. These data suggest that cytoplasmic dynein plays a unique and important role in the initial events of bipolar spindle formation, while any later roles that it may play are redundant. Possible mechanisms of dynein's involvement in mitosis are discussed.


Sign in / Sign up

Export Citation Format

Share Document