scholarly journals Resistance gene discovery and cloning by sequence capture and association genetics

2018 ◽  
Author(s):  
Sanu Arora ◽  
Burkhard Steuernagel ◽  
Sutha Chandramohan ◽  
Yunming Long ◽  
Oadi Matny ◽  
...  

Genetic resistance is the most economic and environmentally sustainable approach for crop disease protection. Disease resistance (R) genes from wild relatives are a valuable resource for breeding resistant crops. However, introgression of R genes into crops is a lengthy process often associated with co-integration of deleterious linked genes1, 2 and pathogens can rapidly evolve to overcome R genes when deployed singly3. Introducing multiple cloned R genes into crops as a stack would avoid linkage drag and delay emergence of resistance-breaking pathogen races4. However, current R gene cloning methods require segregating or mutant progenies5–10, which are difficult to generate for many wild relatives due to poor agronomic traits. We exploited natural pan-genome variation in a wild diploid wheat by combining association genetics with R gene enrichment sequencing (AgRenSeq) to clone four stem rust resistance genes in <6 months. RenSeq combined with diversity panels is therefore a major advance in isolating R genes for engineering broad-spectrum resistance in crops.

2020 ◽  
Vol 22 (1) ◽  
pp. 313
Author(s):  
Aldrin Y. Cantila ◽  
Nur Shuhadah Mohd Saad ◽  
Junrey C. Amas ◽  
David Edwards ◽  
Jacqueline Batley

Among the Brassica oilseeds, canola (Brassica napus) is the most economically significant globally. However, its production can be limited by blackleg disease, caused by the fungal pathogen Lepstosphaeria maculans. The deployment of resistance genes has been implemented as one of the key strategies to manage the disease. Genetic resistance against blackleg comes in two forms: qualitative resistance, controlled by a single, major resistance gene (R gene), and quantitative resistance (QR), controlled by numerous, small effect loci. R-gene-mediated blackleg resistance has been extensively studied, wherein several genomic regions harbouring R genes against L. maculans have been identified and three of these genes were cloned. These studies advance our understanding of the mechanism of R gene and pathogen avirulence (Avr) gene interaction. Notably, these studies revealed a more complex interaction than originally thought. Advances in genomics help unravel these complexities, providing insights into the genes and genetic factors towards improving blackleg resistance. Here, we aim to discuss the existing R-gene-mediated resistance, make a summary of candidate R genes against the disease, and emphasise the role of players involved in the pathogenicity and resistance. The comprehensive result will allow breeders to improve resistance to L. maculans, thereby increasing yield.


Genetics ◽  
1996 ◽  
Vol 142 (3) ◽  
pp. 1021-1031 ◽  
Author(s):  
Jianping Hu ◽  
Beth Anderson ◽  
Susan R Wessler

Abstract R and B genes and their homologues encode basic helix-loop-helix (bHLH) transcriptional activators that regulate the anthocyanin biosynthetic pathway in flowering plants. In maize, R/B genes comprise a very small gene family whose organization reflects the unique evolutionary history and genome architecture of maize. To know whether the organization of the R gene family could provide information about the origins of the distantly related grass rice, we characterized members of the R gene family from rice Oryza sativa. Despite being a true diploid, O. sativa has at least two R genes. An active homologue (Ra) with extensive homology with other R genes is located at a position on chromosome 4 previously shown to be in synteny with regions of maize chromosomes 2 and 10 that contain the B and R loci, respectively. A second rice R gene (Rb) of undetermined function was identified on chromosome 1 and found to be present only in rice species with AA genomes. All non-AA species have but one R gene that is Ra-like. These data suggest that the common ancestor shared by maize and rice had a single R gene and that the small R gene families of grasses have arisen recently and independently.


2013 ◽  
Vol 103 (8) ◽  
pp. 833-840 ◽  
Author(s):  
Samira Khallouk ◽  
Roger Voisin ◽  
Ulysse Portier ◽  
Joël Polidori ◽  
Cyril Van Ghelder ◽  
...  

Root-knot nematodes (RKNs) (Meloidogyne spp.) are highly polyphagous pests that parasitize Prunus crops in Mediterranean climates. Breeding for RKN-resistant Prunus cultivars, as an alternative to the now-banned use of nematicides, is a real challenge, because the perennial nature of these trees increases the risk of resistance breakdown. The Ma plum resistance (R) gene, with a complete spectrum, and the RMia peach R gene, with a more restricted spectrum, both provide total control of Meloidogyne incognita, the model parthenogenetic species of the genus and the most important RKN in terms of economic losses. We investigated the durability of the resistance to this nematode conferred by these genes, comparing the results obtained with those for the tomato Mi-1 reference gene. In multiyear experiments, we applied a high and continuous nematode inoculum pressure by cultivating nematode-infested susceptible tomato plants with either Prunus accessions carrying Ma or RMia R genes, or with resistant tomato plants carrying the Mi-1 gene. Suitable conditions for Prunus development were achieved by carrying out the studies in a glasshouse, in controlled conditions allowing a short winter leaf fall and dormancy. We first assessed the plum accession ‘P.2175’, which is heterozygous for the Ma gene, in two successive 2-year evaluations, for resistance to two M. incognita isolates. Whatever the isolate used, no nematodes reproducing on P.2175 were detected, whereas galls and nematodes reproducing on tomato plants carrying Mi-1 were observed. In a second experiment with the most aggressive isolate, interspecific full-sib material (P.2175 × [‘Garfi’ almond × ‘Nemared’ peach]), carrying either Ma or RMia (from Nemared) or both (in the heterozygous state) or neither of these genes, was evaluated for 4 years. No virulent nematodes developed on Prunus spp. carrying R genes, whereas galling and virulent individuals were observed on Mi-1-resistant tomato plants. Thus, the resistance to M. incognita conferred by Ma in Prunus material in both a pure-plum and an interspecific genetic background, or by RMia in an interspecific background, appears to be durable, highlighting the value of these two genes for the creation of Prunus rootstock material.


Plant Disease ◽  
2011 ◽  
Vol 95 (8) ◽  
pp. 941-944 ◽  
Author(s):  
M. N. Rouse ◽  
Y. Jin

Wheat stem rust, caused by Puccinia graminis f. sp. tritici, has been effectively controlled through the use of genetic resistance. P. graminis f. sp. tritici race TTKSK (Ug99) possesses virulence to many resistance genes that have been used in wheat breeding worldwide. One strategy to aid breeders in developing resistant cultivars is to utilize resistance genes transferred from wild relatives to wheat. Stem rust resistance genes have previously been introgressed from Triticum monococcum to wheat. In order to identify additional resistance genes, we screened 1,061 accessions of T. monococcum and 205 accessions of T. urartu against race TTKSK and four additional P. graminis f. sp. tritici races: TTTTF, TRTTF, QFCSC, and MCCFC. A high frequency of the accessions (78.7% of T. monococcum and 93.0% of T. urartu) were resistant to P. graminis f. sp. tritici race TTKSK, with infection types ranging from 0 to 2+. Among these resistant accessions, 55 T. monococcum accessions (6.4% of the total) were also resistant to the other four races. Associations of resistance in T. monococcum germplasm to different races indicated the presence of genes conferring resistance to multiple races. Comparing the observed infection type patterns to the expected patterns of known genes indicated that previously uncharacterized genes for resistance to race TTKSK exist in both T. monococcum and T. urartu.


Author(s):  
Sona. S Dev ◽  
P. Poornima ◽  
Akhil Venu

Eggplantor brinjal (Solanum melongena L.), is highly susceptible to various soil-borne diseases. The extensive use of chemical fungicides to combat these diseases can be minimized by identification of resistance gene analogs (RGAs) in wild species of cultivated plants.In the present study, degenerate PCR primers for the conserved regions ofnucleotide binding site-leucine rich repeat (NBS-LRR) were used to amplify RGAs from wild relatives of eggplant (Black nightshade (Solanum nigrum), Indian nightshade (Solanumviolaceum)and Solanu mincanum) which showed resistance to the bacterial wilt pathogen, Ralstonia solanacearumin the preliminary investigation. The amino acid sequence of the amplicons when compared to each other and to the amino acid sequences of known RGAs deposited in Gen Bank revealed significant sequence similarity. The phylogenetic analysis indicated that they belonged to the toll interleukin-1 receptors (TIR)-NBS-LRR type R-genes. Multiple sequence alignment with other known R genes showed significant homology with P-loop, Kinase 2 and GLPL domains of NBS-LRR class genes. There has been no report on R genes from these wild eggplants and hence the diversity analysis of these novel RGAs can lead to the identification of other novel R genes within the germplasm of different brinjal plants as well as other species of Solanum.


2016 ◽  
Vol 106 (10) ◽  
pp. 1170-1176 ◽  
Author(s):  
A. K. Mahoney ◽  
E. M. Babiker ◽  
T. C. Paulitz ◽  
D. See ◽  
P. A. Okubara ◽  
...  

Root rot caused by Rhizoctonia spp. is an economically important soilborne disease of spring-planted wheat in growing regions of the Pacific Northwest (PNW). The main method of controlling the disease currently is through tillage, which deters farmers from adopting the benefits of minimal tillage. Genetic resistance to this disease would provide an economic and environmentally sustainable resource for farmers. In this study, a collection of synthetic-derived genotypes was screened in high-inoculum and low-inoculum field environments. Six genotypes were found to have varying levels of resistance and tolerance to Rhizoctonia root rot. One of the lines, SPBC-3104 (‘Vorobey’), exhibited good tolerance in the field and was crossed to susceptible PNW-adapted ‘Louise’ to examine the inheritance of the trait. A population of 190 BC1-derived recombinant inbred lines was assessed in two field green bridge environments and in soils artificially infested with Rhizoctonia solani AG8. Genotyping by sequencing and composite interval mapping identified three quantitative trait loci (QTL) controlling tolerance. Beneficial alleles of all three QTL were contributed by the synthetic-derived genotype SPCB-3104.


Plant Disease ◽  
2020 ◽  
Vol 104 (12) ◽  
pp. 3131-3134
Author(s):  
Qiaoyun Li ◽  
Mengyu Li ◽  
Yumei Jiang ◽  
Siyu Wang ◽  
Kaige Xu ◽  
...  

The most effective and environmentally sustainable method for controlling black point disease of wheat (Triticum aestivum L.) is to plant resistant cultivars. To identify sources of resistance to black point, 165 selected cultivars/lines were inoculated with isolates of six fungal species (Bipolaris sorokiniana, Alternaria alternata, Fusarium equiseti, Exserohilum rostratum, Epicoccum sorghinum, and Curvularia spicifera) known to cause black point in wheat using spore suspensions under controlled field conditions in 2016 and 2017. Inoculation of the isolates significantly increased the incidence of black point in the cultivars/lines compared with those grown under natural field conditions (NFC). The disease incidence of plants inoculated with B. sorokiniana and E. rostratum was 15.5% and 18.8% in 2016, and 20.4% and 23.0% in 2017, whereas those under NFC were 5.7% (2016) and 1.5% (2017), respectively. Furthermore, disease symptoms varied with pathogen. Among the 165 cultivars/lines tested, 3.6%, 50.9%, 60.0%, 1.8%, 47.3%, and 58.8% were resistant to B. sorokiniana, A. alternata, F. equiseti, E. rostratum, E. sorghinum, and C. spicifera, respectively. In addition, we identified one line (‘SN530070’) resistant to black point caused by all six pathogens. This is the first study to assess resistance to wheat black point caused by six fungal species under controlled conditions. The black point-resistant cultivars/lines could be useful in breeding and also in research on the mechanisms of resistance to black point.


2019 ◽  
Vol 9 (10) ◽  
pp. 3315-3332 ◽  
Author(s):  
Christopher R. Barbey ◽  
Seonghee Lee ◽  
Sujeet Verma ◽  
Kevin A. Bird ◽  
Alan E. Yocca ◽  
...  

Octoploid strawberry (Fragaria ×ananassa) is a valuable specialty crop, but profitable production and availability are threatened by many pathogens. Efforts to identify and introgress useful disease resistance genes (R-genes) in breeding programs are complicated by strawberry’s complex octoploid genome. Recently-developed resources in strawberry, including a complete octoploid reference genome and high-resolution octoploid genotyping, enable new analyses in strawberry disease resistance genetics. This study characterizes the complete R-gene collection in the genomes of commercial octoploid strawberry and two diploid ancestral relatives, and introduces several new technological and data resources for strawberry disease resistance research. These include octoploid R-gene transcription profiling, dN/dS analysis, expression quantitative trait loci (eQTL) analysis and RenSeq analysis in cultivars. Octoploid fruit eQTL were identified for 76 putative R-genes. R-genes from the ancestral diploids Fragaria vesca and Fragaria iinumae were compared, revealing differential inheritance and retention of various octoploid R-gene subtypes. The mode and magnitude of natural selection of individual F. ×ananassa R-genes was also determined via dN/dS analysis. R-gene sequencing using enriched libraries (RenSeq) has been used recently for R-gene discovery in many crops, however this technique somewhat relies upon a priori knowledge of desired sequences. An octoploid strawberry capture-probe panel, derived from the results of this study, is validated in a RenSeq experiment and is presented for community use. These results give unprecedented insight into crop disease resistance genetics, and represent an advance toward exploiting variation for strawberry cultivar improvement.


2014 ◽  
Vol 32 (10) ◽  
pp. 1045-1052 ◽  
Author(s):  
Ying-hui Li ◽  
Guangyu Zhou ◽  
Jianxin Ma ◽  
Wenkai Jiang ◽  
Long-guo Jin ◽  
...  

Author(s):  
D. P. Semwal ◽  
S. P. Ahlawat ◽  
K. Pradheep

A total of 2,456 germplasm accessions of pigeonpea (Cajanus cajan) and its wild spp. having essential geo-coordinates (latitude and longitude)/locality information were analysed for spatial and diversity distribution through GIS tools. Analysis of passport data revealed that maximum number of germplasm accessions are collected from the states of Madhya Pradesh (438 accessions) followed by Jharkhand (387), Andhra Pradesh (326), Telangana (253), Bihar (249), Gujarat (230), Uttar Pradesh (188) and Maharashtra (178). India being the centre of origin and diversity of this crop, collecting resulted in augmentation of 86 landraces from 14 states. Among wild relatives of pigeonpea, only Cajanus scarabaeoides (46) and C. cajanifolius (6) were augmented. GIS mapping of 107 selected trait-specific germplasm (with regard to eight important morpho-agronomic traits) identified few areas – Akola (Maharashtra) for pod bearing length; Srikakulam (Andhra Pradesh) for bold seed; and Banaskantha (Gujarat) for high pod number. Unexplored and underexplored areas as well as crop wild relatives belonging to genepool one and two are identified for future collection.


Sign in / Sign up

Export Citation Format

Share Document