scholarly journals An atlas of silencer elements for the human and mouse genomes

2018 ◽  
Author(s):  
Naresh Doni Jayavelu ◽  
Ajay Jajodia ◽  
Arpit Mishra ◽  
R. David Hawkins

ABSTRACTThe study of gene regulation is dominated by a focus on the control of gene activation or controlling an increase in the level of expression. Just as critical is the process of gene repression or silencing. Chromatin signatures have allowed for the global mapping of enhancer cis-regulatory elements, however, the identification of silencer elements by computational or experimental approaches in a genome-wide manner are lacking. We present a simple but powerful computational approach to identify putative silencers genome-wide. We used a series of consortia data to predict silencers in over 100 human and mouse cell or tissue types. We performed several analyses to determine if these elements exhibited characteristics expected of a silencers. Motif enrichment analyses on putative silencers determined that motifs belonging to known transcriptional repressors are enriched, as well as overlapping known transcription repressor binding sites. Leveraging promoter capture HiC data from several human and mouse cell types, we found that over 50% of putative silencer elements are interacting with gene promoters having very low to no expression. Next, to validate our silencer predictions, we quantified silencer activity using massively parallel reporter assays (MPRAs) on 7500 selected elements in K562 cells. We trained a support vector machine model classifier on MPRA data and used it to refine potential silencers in other cell types. We also show that similar to enhancer elements, silencer elements are enriched in disease-associated variants. Our results suggest a general strategy for genome-wide identification and characterization of silencer elements.

2022 ◽  
Vol 12 ◽  
Author(s):  
Inge Holm ◽  
Luisa Nardini ◽  
Adrien Pain ◽  
Emmanuel Bischoff ◽  
Cameron E. Anderson ◽  
...  

Almost all regulation of gene expression in eukaryotic genomes is mediated by the action of distant non-coding transcriptional enhancers upon proximal gene promoters. Enhancer locations cannot be accurately predicted bioinformatically because of the absence of a defined sequence code, and thus functional assays are required for their direct detection. Here we used a massively parallel reporter assay, Self-Transcribing Active Regulatory Region sequencing (STARR-seq), to generate the first comprehensive genome-wide map of enhancers in Anopheles coluzzii, a major African malaria vector in the Gambiae species complex. The screen was carried out by transfecting reporter libraries created from the genomic DNA of 60 wild A. coluzzii from Burkina Faso into A. coluzzii 4a3A cells, in order to functionally query enhancer activity of the natural population within the homologous cellular context. We report a catalog of 3,288 active genomic enhancers that were significant across three biological replicates, 74% of them located in intergenic and intronic regions. The STARR-seq enhancer screen is chromatin-free and thus detects inherent activity of a comprehensive catalog of enhancers that may be restricted in vivo to specific cell types or developmental stages. Testing of a validation panel of enhancer candidates using manual luciferase assays confirmed enhancer function in 26 of 28 (93%) of the candidates over a wide dynamic range of activity from two to at least 16-fold activity above baseline. The enhancers occupy only 0.7% of the genome, and display distinct composition features. The enhancer compartment is significantly enriched for 15 transcription factor binding site signatures, and displays divergence for specific dinucleotide repeats, as compared to matched non-enhancer genomic controls. The genome-wide catalog of A. coluzzii enhancers is publicly available in a simple searchable graphic format. This enhancer catalogue will be valuable in linking genetic and phenotypic variation, in identifying regulatory elements that could be employed in vector manipulation, and in better targeting of chromosome editing to minimize extraneous regulation influences on the introduced sequences.Importance: Understanding the role of the non-coding regulatory genome in complex disease phenotypes is essential, but even in well-characterized model organisms, identification of regulatory regions within the vast non-coding genome remains a challenge. We used a large-scale assay to generate a genome wide map of transcriptional enhancers. Such a catalogue for the important malaria vector, Anopheles coluzzii, will be an important research tool as the role of non-coding regulatory variation in differential susceptibility to malaria infection is explored and as a public resource for research on this important insect vector of disease.


2019 ◽  
Author(s):  
Florian Schmidt ◽  
Alexander Marx ◽  
Marie Hebel ◽  
Martin Wegner ◽  
Nina Baumgarten ◽  
...  

AbstractUnderstanding the complexity of transcriptional regulation is a major goal of computational biology. Because experimental linkage of regulatory sites to genes is challenging, computational methods considering epigenomics data have been proposed to create tissue-specific regulatory maps. However, we showed that these approaches are not well suited to account for the variations of the regulatory landscape between cell-types. To overcome these drawbacks, we developed a new method called STITCHIT, that identifies and links putative regulatory sites to genes. Within STITCHIT, we consider the chromatin accessibility signal of all samples jointly to identify regions exhibiting a signal variation related to the expression of a distinct gene. STITCHIToutperforms previous approaches in various validation experiments and was used with a genome-wide CRISPR-Cas9 screen to prioritize novel doxorubicin-resistance genes and their associated non-coding regulatory regions. We believe that our work paves the way for a more refined understanding of transcriptional regulation at the gene-level.


Lab Animal ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 17-17
Author(s):  
Alexandra Le Bras

Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1007
Author(s):  
Divya Kattupalli ◽  
Asha Sreenivasan ◽  
Eppurathu Vasudevan Soniya

Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Soo Bin Kwon ◽  
Jason Ernst

AbstractIdentifying genomic regions with functional genomic properties that are conserved between human and mouse is an important challenge in the context of mouse model studies. To address this, we develop a method to learn a score of evidence of conservation at the functional genomics level by integrating information from a compendium of epigenomic, transcription factor binding, and transcriptomic data from human and mouse. The method, Learning Evidence of Conservation from Integrated Functional genomic annotations (LECIF), trains neural networks to generate this score for the human and mouse genomes. The resulting LECIF score highlights human and mouse regions with shared functional genomic properties and captures correspondence of biologically similar human and mouse annotations. Analysis with independent datasets shows the score also highlights loci associated with similar phenotypes in both species. LECIF will be a resource for mouse model studies by identifying loci whose functional genomic properties are likely conserved.


1987 ◽  
Vol 7 (10) ◽  
pp. 3466-3472
Author(s):  
D M Ornitz ◽  
R E Hammer ◽  
B L Davison ◽  
R L Brinster ◽  
R D Palmiter

An elastase-human growth hormone (hGH) fusion gene containing 205 base pairs of elastase 5' flanking region is expressed exclusively in pancreatic acinar cells of transgenic mice. This paper shows that the promoter region (-72 to +8) and the enhancer (-205 to -73) function independently of each other. The elastase enhancer can activate the heterologous mouse metallothionein gene and the hGH gene promoters; conversely, enhancers from the thymocyte-specific murine leukemia virus MCF13 and the metal regulatory elements from the metallothionein gene can activate the elastase promoter in a variety of cell types. Combinations of immunoglobulin and elastase enhancers with a heterologous promoter and the hGH gene result in expression in all of the tissues predicted by the sum of each enhancer acting alone. Thus these enhancer elements act independently of each other, suggesting that they do not have silencing activity in cells in which they are normally inactive.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258657
Author(s):  
Abhirup Paul ◽  
Anurag P. Srivastava ◽  
Shreya Subrahmanya ◽  
Guoxin Shen ◽  
Neelam Mishra

Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.


2021 ◽  
Author(s):  
Sneha Gopalan ◽  
Yuqing Wang ◽  
Nicholas W. Harper ◽  
Manuel Garber ◽  
Thomas G Fazzio

Methods derived from CUT&RUN and CUT&Tag enable genome-wide mapping of the localization of proteins on chromatin from as few as one cell. These and other mapping approaches focus on one protein at a time, preventing direct measurements of co-localization of different chromatin proteins in the same cells and requiring prioritization of targets where samples are limiting. Here we describe multi-CUT&Tag, an adaptation of CUT&Tag that overcomes these hurdles by using antibody-specific barcodes to simultaneously map multiple proteins in the same cells. Highly specific multi-CUT&Tag maps of histone marks and RNA Polymerase II uncovered sites of co-localization in the same cells, active and repressed genes, and candidate cis-regulatory elements. Single-cell multi-CUT&Tag profiling facilitated identification of distinct cell types from a mixed population and characterization of cell type-specific chromatin architecture. In sum, multi-CUT&Tag increases the information content per cell of epigenomic maps, facilitating direct analysis of the interplay of different proteins on chromatin.


2020 ◽  
Author(s):  
SK Reilly ◽  
SJ Gosai ◽  
A Gutierrez ◽  
JC Ulirsch ◽  
M Kanai ◽  
...  

AbstractCRISPR screens for cis-regulatory elements (CREs) have shown unprecedented power to endogenously characterize the non-coding genome. To characterize CREs we developed HCR-FlowFISH (Hybridization Chain Reaction Fluorescent In-Situ Hybridization coupled with Flow Cytometry), which directly quantifies native transcripts within their endogenous loci following CRISPR perturbations of regulatory elements, eliminating the need for restrictive phenotypic assays such as growth or transcript-tagging. HCR-FlowFISH accurately quantifies gene expression across a wide range of transcript levels and cell types. We also developed CASA (CRISPR Activity Screen Analysis), a hierarchical Bayesian model to identify and quantify CRE activity. Using >270,000 perturbations, we identified CREs for GATA1, HDAC6, ERP29, LMO2, MEF2C, CD164, NMU, FEN1 and the FADS gene cluster. Our methods detect subtle gene expression changes and identify CREs regulating multiple genes, sometimes at different magnitudes and directions. We demonstrate the power of HCR-FlowFISH to parse genome-wide association signals by nominating causal variants and target genes.


2020 ◽  
Author(s):  
Lei Li ◽  
Yanjie Chao

ABSTRACTSmall proteins shorter than 50 amino acids have been long overlooked. A number of small proteins have been identified in several model bacteria using experimental approaches and assigned important functions in diverse cellular processes. The recent development of ribosome profiling technologies has allowed a genome-wide identification of small proteins and small ORFs (smORFs), but our incomplete understanding of small proteins hinders de novo computational prediction of smORFs in non-model bacterial species. Here, we have identified several sequence features for smORFs by a systematic analysis of all the known small proteins in E. coli, among which the translation initiation rate is the strongest determinant. By integrating these features into a support vector machine learning model, we have developed a novel sPepFinder algorithm that can predict conserved smORFs in bacterial genomes with a high accuracy of 92.8%. De novo prediction in E. coli has revealed several novel smORFs with evidence of translation supported by ribosome profiling. Further application of sPepFinder in 549 bacterial species has led to the identification of > 100,000 novel smORFs, many of which are conserved at the amino acid and nucleotide levels under purifying selection. Overall, we have established sPepFinder as a valuable tool to identify novel smORFs in both model and non-model bacterial organisms, and provided a large resource of small proteins for functional characterizations.


Sign in / Sign up

Export Citation Format

Share Document