scholarly journals A multiplexed homology-directed DNA repair assay reveals the impact of ~1,700 BRCA1 variants on protein function

2018 ◽  
Author(s):  
Lea M. Starita ◽  
Muhtadi M. Islam ◽  
Tapahsama Banerjee ◽  
Aleksandra I. Adamovich ◽  
Justin Gullingsrud ◽  
...  

AbstractLoss-of-function mutations in BRCA1 confer a predisposition to breast and ovarian cancer. Genetic testing for mutations in the BRCA1 gene frequently reveals a missense variant for which the impact on the molecular function of the BRCA1 protein is unknown. Functional BRCA1 is required for homology directed repair (HDR) of double-strand DNA breaks, a key activity for maintaining genome integrity and tumor suppression. Here we describe a multiplex HDR reporter assay to simultaneously measure the effect of hundreds of variants of BRCA1 on its role in DNA repair. Using this assay, we measured the effects of ~1,700 amino acid substitutions in the first 302 residues of BRCA1. Benchmarking these results against variants with known effects, we demonstrate accurate discrimination of loss-of-function versus benign variants. We anticipate that this assay can be used to functionally characterize BRCA1 missense variants at scale, even before the variants are observed in results from genetic testing.

2014 ◽  
Vol 26 (1) ◽  
pp. 74 ◽  
Author(s):  
Daniel F. Carlson ◽  
Wenfang Tan ◽  
Perry B. Hackett ◽  
Scott C. Fahrenkrug

Over the past 5 years there has been a major transformation in our ability to precisely manipulate the genomes of animals. Efficiencies of introducing precise genetic alterations in large animal genomes have improved 100 000-fold due to a succession of site-specific nucleases that introduce double-strand DNA breaks with a specificity of 10–9. Herein we describe our applications of site-specific nucleases, especially transcription activator-like effector nucleases, to engineer specific alterations in the genomes of pigs and cows. We can introduce variable changes mediated by non-homologous end joining of DNA breaks to inactive genes. Alternatively, using homology-directed repair, we have introduced specific changes that support either precise alterations in a gene’s encoded polypeptide, elimination of the gene or replacement by another unrelated DNA sequence. Depending on the gene and the mutation, we can achieve 10%–50% effective rates of precise mutations. Applications of the new precision genetics are extensive. Livestock now can be engineered with selected phenotypes that will augment their value and adaption to variable ecosystems. In addition, animals can be engineered to specifically mimic human diseases and disorders, which will accelerate the production of reliable drugs and devices. Moreover, animals can be engineered to become better providers of biomaterials used in the medical treatment of diseases and disorders.


Author(s):  
Natalia Felipe-Medina ◽  
Sandrine Caburet ◽  
Fernando Sánchez-Sáez ◽  
Yazmine B. Condezo ◽  
Dirk de Rooij ◽  
...  

AbstractPrimary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with 3 cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse, compared to a new HSF2BP knock-out mouse showed that it behaves as a hypomorphic allele. HSF2BP-S167L females show reduced fertility with small litter sizes. To obtain mechanistic insights, we identified C19ORF57/MIDAP as a strong interactor and stabilizer of HSF2BP by forming a higher-order macromolecular structure involving BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L mutation showed a strongly decreased expression of both MIDAP and HSF2BP at the recombination nodules. Although HSF2BP-S167L does not affect heterodimerization between HSF2BP and MIDAP, it promotes a lower expression of both proteins and a less proficient activity in replacing RPA by the recombinases RAD51/DMC1, thus leading to a lower frequency of cross-overs. Our results provide insights into the molecular mechanism of two novel actors of meiosis underlying non-syndromic ovarian insufficiency.SummaryFelipe-Medina et al. describe a missense variant in the meiotic gene HSF2BP in a consanguineous family with Premature Ovarian Insufficiency, and characterize it as an hypormorphic allele, that in vivo impairs its dimerization with a novel meiotic actor, MIDAP/ C19ORF57, and affect recombination at double-strand DNA breaks.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Sarah K. Macklin ◽  
Katelyn A. Bruno ◽  
Charitha Vadlamudi ◽  
Haytham Helmi ◽  
Ayesha Samreen ◽  
...  

We describe the phenotype of a patient with extensive aortic, carotid, and abdominal dissections. The proband was found to have a heterozygous deletion of exons 21–34 in MYLK, which is a rare finding, as deletions in this gene have been infrequently reported. We describe this finding following detection in a proband with an extensive history of aortic, carotid, and abdominal dissections. Neoteric molecular modeling techniques to help determine the impact of this deletion on protein function indicated loss of function due to lack of any kinase domain. We also provide the electrostatics calculations from the wild type and mutant variant. Through a combined multiomic approach of clinical, functional, and protein informatics, we arrive at a data fusion for determination of pathogenicity embedded within the genetic code for this particular genetic variant, which, as a platform, continues to broaden its scope across the field of variants of uncertain significance classification.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e15582-e15582
Author(s):  
Dineo Khabele ◽  
Andrew J Wilson ◽  
Annie Y Liu ◽  
Joseph Roland ◽  
Sarah Fletcher ◽  
...  

e15582 Background: The nucleolar protein, nucleophosmin (NPM1) is implicated multiple cellular processes, including proliferation, duplication of centrosomes, ARF-HDM2-p53 signaling. NPM1 is associated with sites of double strand DNA breaks, with persistence of its expression indicative of impaired DNA repair. Data from the TCGA data have emphasized that genomic instability through impaired DNA repair processes is a characteristic feature of many ovarian cancers. Our aim was to determine the expression of NPM1 in ovarian cancers and to determine the relationship between NPM1 expression and clinical outcomes including overall survival (OS), progression-free survival (PFS) and chemotherapy response. Methods: Tissue microarrays were created from 209 patients treated for ovarian cancer at a single institution from 1994-2004. Expression levels of NPM1 were examined by immunohistochemical staining. Slides were scored using the an automated image capture and analysis system. Positive nuclear staining was used to stratify tumors into high (>50%) and low (<50%) groups, and the results were related to overall survival (OS) and progression-free survival (PFS) via Kaplan-Meier analysis. The relationship between ki67, a proliferation marker and pH2AX, a mark of double strand DNA breaks was measured with Spearman rank correlation coefficient analyses. Results: The majority of tumors, 140/209 (69%) were of serous histology, advanced stage 146/209 (70%) and high grade 158/209 (76%). There was >50% NPM1 expression in 83/209 (40%) and <50% in 126/209 (60%) of the cases. Expression of NPM1 was higher in high grade tumors, and its expression alone was a significant predictor of PFS (p=0.022) but not OS (p=0.053). When adjusting for other predictors, NPM1 expression was predictive of PFS (p=0.047), but not OS (p=0.054). No relationship between NPM1 expression and response to platinum chemotherapy was observed. However, NPM1 expression correlated with Ki67 (r=0.43, p<0.0001) and pH2AX (r=0.22, p=0.0014). Conclusions: NPM1 expression is a mark of poor prognosis in ovarian cancer. Whether these observations reflect increased proliferation and/or genomic instability in ovarian cancer cells will be the focus of future investigation.


Reproduction ◽  
2017 ◽  
Vol 153 (6) ◽  
pp. 725-735 ◽  
Author(s):  
Hermance Beaud ◽  
Ans van Pelt ◽  
Geraldine Delbes

Anticancer drugs, such as alkylating agents, can affect male fertility by targeting the DNA of proliferative spermatogonial stem cells (SSC). Therefore, to reduce such side effects, other chemotherapeutics are used. However, less is known about their potential genotoxicity on SSC. Moreover, DNA repair mechanisms in SSC are poorly understood. To model treatments deprived of alkylating agents that are commonly used in cancer treatment, we tested the impact of exposure to doxorubicin and vincristine, alone or in combination (MIX), on a rat spermatogonial cell line with SSC characteristics (GC-6spg). Vincristine alone induced a cell cycle arrest and cell death without genotoxic impact. On the other hand, doxorubicin and the MIX induced a dose-dependent cell death. More importantly, doxorubicin and the MIX induced DNA breaks, measured by the COMET assay, at a non-cytotoxic dose. To elucidate which DNA repair pathway is activated in spermatogonia after exposure to doxorubicin, we screened the expression of 75 genes implicated in DNA repair. Interestingly, all were expressed constitutively in GC-6spg, suggesting great potential to respond to genotoxic stress. Doxorubicin treatments affected the expression of 16 genes (>1.5 fold change;P < 0.05) involved in cell cycle, base/nucleotide excision repair, homologous recombination and non-homologous end joining (NHEJ). The significant increase in CDKN1A and XRCC1 suggest a cell cycle arrest and implies an alternative NHEJ pathway in response to doxorubicin-induced DNA breaks. Together, our results support the idea that undifferentiated spermatogonia have the ability to respond to DNA injury from chemotherapeutic compounds and escape DNA break accumulation.


NAR Cancer ◽  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Zhenbao Yu ◽  
Sofiane Y Mersaoui ◽  
Laure Guitton-Sert ◽  
Yan Coulombe ◽  
Jingwen Song ◽  
...  

Abstract R-loops are three-stranded structures consisting of a DNA/RNA hybrid and a displaced DNA strand. The regulatory factors required to process this fundamental genetic structure near double-strand DNA breaks (DSBs) are not well understood. We previously reported that cellular depletion of the ATP-dependent DEAD box RNA helicase DDX5 increases R-loops genome-wide causing genomic instability. In this study, we define a pivotal role for DDX5 in clearing R-loops at or near DSBs enabling proper DNA repair to avoid aberrations such as chromosomal deletions. Remarkably, using the non-homologous end joining reporter gene (EJ5-GFP), we show that DDX5-deficient U2OS cells exhibited asymmetric end deletions on the side of the DSBs where there is overlap with a transcribed gene. Cross-linking and immunoprecipitation showed that DDX5 bound RNA transcripts near DSBs and required its helicase domain and the presence of DDX5 near DSBs was also shown by chromatin immunoprecipitation. DDX5 was excluded from DSBs in a transcription- and ATM activation-dependent manner. Using DNA/RNA immunoprecipitation, we show DDX5-deficient cells had increased R-loops near DSBs. Finally, DDX5 deficiency led to delayed exonuclease 1 and replication protein A recruitment to laser irradiation-induced DNA damage sites, resulting in homologous recombination repair defects. Our findings define a role for DDX5 in facilitating the clearance of RNA transcripts overlapping DSBs to ensure proper DNA repair.


2020 ◽  
Author(s):  
Fanbiao Meng ◽  
Minxian Qian ◽  
Bin Peng ◽  
Xiaohui Wang ◽  
Linyuan Peng ◽  
...  

SummaryThe DNA damage response (DDR) is a highly orchestrated process but how double-strand DNA breaks (DSBs) are initially recognized is unclear. Here, we show that polymerized SIRT6 deacetylase recognizes DSBs and potentiates the DDR. First, SIRT1 deacetylates SIRT6 at residue K33, which is important for SIRT6 polymerization and mobilization toward DSBs. Then, K33-deacetylated SIRT6 anchors to γH2AX, allowing its retention on and subsequent remodeling of local chromatin. We show that a K33R mutation that mimics hypoacetylated SIRT6 can rescue defective DNA repair as a result of SIRT1 deficiency in cultured cells. These data highlight the synergistic action between SIRTs in the spatiotemporal regulation of the DDR and DNA repair.


2019 ◽  
Author(s):  
Kejia Zhang ◽  
Jenna M Lentini ◽  
Christopher T Prevost ◽  
Mais O Hashem ◽  
Fowzan S Alkuraya ◽  
...  

AbstractThe human TRMT1 gene encodes a tRNA methyltransferase enzyme responsible for the formation of the dimethylguanosine (m2,2G) modification in cytoplasmic and mitochondrial tRNAs. Frameshift mutations in the TRMT1 gene have been shown to cause autosomal-recessive intellectual disability (ID) in the human population but additional TRMT1 variants remain to be characterized. Moreover, the impact of ID-associated TRMT1 mutations on m2,2G levels in ID-affected patients is unknown. Here, we describe a homozygous missense variant in TRMT1 in a patient displaying developmental delay, ID, and epilepsy. The missense variant changes a conserved arginine residue to a cysteine (R323C) within the methyltransferase domain of TRMT1 and is expected to perturb protein folding. Patient cells expressing the TRMT1-R323C variant exhibit a severe deficiency in m2,2G modifications within tRNAs, indicating that the mutation causes loss-of-function. Notably, the TRMT1 R323C mutant retains the ability to bind tRNA but is unable to rescue m2,2G formation in TRMT1-deficient human cells. Our results identify a pathogenic point mutation in TRMT1 that severely perturbs tRNA modification activity, and provide the first demonstration that m2,2G modifications are disrupted in patients with TRMT1-associated ID disorders.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 363-363
Author(s):  
Subodh Kumar ◽  
Leutz Buon ◽  
Srikanth Talluri ◽  
Chengcheng Liao ◽  
Jialan Shi ◽  
...  

Identification of mechanisms underlying genomic instability is necessary to understand disease progression, including development of drug resistance. Our previous data demonstrates that dysregulation of DNA repair and maintenance/modification activities (including homologous recombination (HR), apurinic/apyrimidinic nuclease and APOBEC) significantly contribute to genomic instability in multiple myeloma (MM). However, how these and other pathways involved in genomic instability are dysregulated, remains to be explored. Since kinases play a critical role in the regulation of the maintenance of genomic integrity, we have performed a genome-wide kinome profiling to identify those involved in genomic instability in cancer. First, we analyzed genomic database for ten human cancers (including MM) from TCGA with both tumor cell gene expression and SNP/CGH array-based copy number information for each patient.We assessed genomic instability in each patient based on the total number of amplification and deletion events. We next interrogated all 550 kinases expressed in humans and identified those whose expression correlated with copy number alteration (based on FDR ≤ 0.05) in all tumor types. We identified six kinases whose elevated expression correlated with increased genomic instability defined by genomic amplification/deletion events in all ten cancers, including MM. To demonstrate functional relevance of these kinases, we conducted a CRISPR-based loss of function screen (using 3 guides per gene) in MM cells and evaluated the impact of each gene-knockout on micronuclei, a marker of ongoing genomic rearrangements and instability. For all six kinases, at least one guide resulted in ≥ 65% inhibition of micronuclei formation. Moreover, for five out of the six kinases, at least two guides showed ≥ 60% inhibition of micronuclei. All together, these data establishes a strong relevance of these kinases with genomic instability in MM. PDZ Binding Kinase (PBK) was among top kinases impacting genome stability in this data set with 2 out of 3 guides causing &gt; 88% and 3rdguide causing 35% inhibition of micronuclei formation. We further report that inhibition of PBK, by knockdown or small molecule, inhibits DNA breaks, RAD51 recombinase expression and homologous recombination in MM cells. We further investigated molecular mechanisms involved in PBK-mediated genomic instability in MM. Expression profiling using RNA sequencing of MM cells treated with a specific PBK inhibitor showed that top ten pathways downregulated by treatment were mostly DNA repair/recombination followed by replication and G2/M checkpoint. Interestingly, we identified a notable overlap between PBK-regulated genes with FOXM1 target genes. FOXM1 is a major transcriptional regulator of genes involved in DNA repair, G2/M regulation and chromosomal stability. We, therefore, investigated PBK/FOXM1 interaction and show that PBK interacts with FOXM1 in MM cells. Moreover, the inhibition of PBK, by knockdown or small molecule, inhibits phosphorylation of FOXM1 as well as downregulates FOXM1-regulated HR and cell cycle genes RAD51, EXO1 and CDC25A. These results suggest that PBK-dependent phosphorylation of FOXM1 activity controls transcriptional networks involved in genomic instability in MM. Ongoing work is investigating role of PBK and other kinases in progression of MGUS/SMM to active MM and their impact on ongoing genomic changes with influence on multiple DNA repair pathways including HR. In conclusion, we describe a kinase panel that may have significant role in maintaining genome stability, and their perturbation may allow to improve genome stability in MM. Disclosures Munshi: Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy; Takeda: Consultancy.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 359-359
Author(s):  
Matteo Marchesini ◽  
Yamini Ogoti ◽  
Elena Fiorini ◽  
Marianna D'anca ◽  
Paola Storti ◽  
...  

Abstract The 1q21 amplification, which occurs in approximately 40% of de novo and 70% of relapsed MM, is among the most frequent chromosomal aberrations in multiple myeloma (MM) patients and is considered a very high-risk genetic feature that is especially correlated with disease progression and drug resistance. To uncover novel 1q21 MM-critical genes, we first identified a list of 78 potential 1q21 drivers, which were located in the minimal common region of amplification of 254 MM samples and showed copy number-driven expression. These 78 candidates were then subjected to an shRNA screen to identify those genes involved in selective death and/or growth inhibition of MM cells carrying the 1q21 amplification. Using this approach, we identified and functionally validated the Interleukin-2 enhancer binding factor 2 (ILF2) as one of key 1q21 amplification-specific genes. ILF2 downregulation in 1q21-amplified MM cells resulted in multinucleated phenotypes and abnormal nuclear morphologies, findings that are consistent with the DNA damage-induced genomic instability that is associated with DNA repair defects that occur during cellular replication. Correspondingly, ILF2 downregulation was associated with a significant increase in the activation of the ATM (but not ATR or DNA-PK) pathway and accumulation of gH2AX foci, which are indicative of double-strand DNA breaks, and resulted in caspase 3-mediated apoptosis. Therefore, we sought to determine whether ILF2 is involved in the genome damage repair that occurs during cellular replication. To this end, we evaluated whether ILF2 depletion could affect the efficiency of non-homologous end joining (NHEJ) or homologous recombination (HR), the two major repair pathways in mammalian cells. We observed a profound impairment of HR in ILF2-depleted cells (p=0.038), whereas NHEJ was unaltered after ILF2 downregulation. Conversely, enforced ILF2 expression significantly enhanced HR efficiency in MM cells (p=0.008). To further support the role of ILF2 in the regulation of the DNA repair pathway in MM cells, we evaluated whether ILF2 downregulation increased MM sensitivity to DNA-damaging agents routinely used in the treatment of MM. Employing the interstrand crosslinker melphalan as an instigator of double-strand DNA breaks, we found that ILF2-depleted MM cells subjected to continuous melphalan treatment showed increased accumulation of γH2AX and apoptosis. Consistent with these findings, elevated ILF2 expression significantly correlated with poor survival in MM patients treated with high-dose melphalan followed by tandem autologous transplantation (n=256, p=0.01). Mechanistically, mass spectrometry analysis showed that ILF2 interacted with numerous RNA binding proteins directly involved in the regulation of DNA damage response by modulating alternative splicing of specific pre-mRNAs. RNA-sequencing experiments confirmed that ILF2 depletion resulted in aberrant splicing of genes involved in the DNA repair pathway, including ERCC1, FANCD2, and EXO1. RNA immunoprecipitation sequencing experiments showed that ILF2 directly bound to transcripts involved in the regulation of the HR pathway, including components of BRCA1 protein complex. Furthermore, in an attempt to dissect the ILF2 protein interacting network involved in the DNA repair regulation in response to DNA damage activation, we found that ILF2 mediated drug resistance in a dose-dependent manner by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65 to promote mRNA processing and stabilization of DNA repair genes, including FANCD2 and EXO1, in response to DNA damage. In conclusion, our study reveals an intimate relationship among 1q21 amplification, mRNA splicing, and DNA repair in the control of DNA damage response in MM. Given that 1q21 amplification is one of the most frequent copy number alterations in cancer, synthetic lethality approaches based on targeting gain-of-functions associated with ILF2 may have a broad spectrum of applications to potentiate the sensitivity of cancer cells to chemotherapeutic agents. Disclosures Giuliani: Janssen: Research Funding; Celgene: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document