scholarly journals Characterization of the role of glycine lipids inBacteroides thetaiotaomicron

2018 ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

AbstractAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by the N-acylation of the amino acid and this is followed by subsequent O-acylation of the acylated molecule resulting in the production of the mature diacylated amino acid lipid. In this study we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of novel diacylated glycine lipid (GL) species inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes a N-acyltransferase activity responsible for the production of a monoacylated glycine called N-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes so far sequenced theglsBgene is located immediately downstream from a gene, namedglsA, also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that co-expression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicronand we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report is the first to describe the genetic requirements for the biosynthesis of GL, a novel diacylated amino acids species that contributes to fitness in the human gut bacterium,B. thetaiotaomicron.

2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Alli Lynch ◽  
Seshu R. Tammireddy ◽  
Mary K. Doherty ◽  
Phillip D. Whitfield ◽  
David J. Clarke

ABSTRACTAcylated amino acids function as important components of the cellular membrane in some bacteria. Biosynthesis is initiated by theN-acylation of the amino acid, and this is followed by subsequentO-acylation of the acylated molecule, resulting in the production of the mature diacylated amino acid lipid. In this study, we use both genetics and liquid chromatography-mass spectrometry (LC-MS) to characterize the biosynthesis and function of a diacylated glycine lipid (GL) species produced inBacteroides thetaiotaomicron. We, and others, have previously reported the identification of a gene, namedglsBin this study, that encodes anN-acyltransferase activity responsible for the production of a monoacylated glycine calledN-acyl-3-hydroxy-palmitoyl glycine (or commendamide). In all of theBacteroidalesgenomes sequenced so far, theglsBgene is located immediately downstream from a gene, namedglsA, that is also predicted to encode a protein with acyltransferase activity. We use LC-MS to show that the coexpression ofglsBandglsAresults in the production of GL inEscherichia coli. We constructed a deletion mutant of theglsBgene inB. thetaiotaomicron, and we confirm thatglsBis required for the production of GL inB. thetaiotaomicron. Moreover, we show thatglsBis important for the ability ofB. thetaiotaomicronto adapt to stress and colonize the mammalian gut. Therefore, this report describes the genetic requirements for the biosynthesis of GL, a diacylated amino acid species that contributes to fitness in the human gut bacteriumB. thetaiotaomicron.IMPORTANCEThe gut microbiome has an important role in both health and disease of the host. The mammalian gut microbiome is often dominated by bacteria from theBacteroidales, an order that includesBacteroidesandPrevotella. In this study, we have identified an acylated amino acid, called glycine lipid, produced byBacteroides thetaiotaomicron, a beneficial bacterium originally isolated from the human gut. In addition to identifying the genes required for the production of glycine lipids, we show that glycine lipids have an important role during the adaptation ofB. thetaiotaomicronto a number of environmental stresses, including exposure to either bile or air. We also show that glycine lipids are important for the normal colonization of the murine gut byB. thetaiotaomicron. This work identifies glycine lipids as an important fitness determinant inB. thetaiotaomicronand therefore increases our understanding of the molecular mechanisms underpinning colonization of the mammalian gut by beneficial bacteria.


2021 ◽  
Author(s):  
Chengsong Zhao ◽  
Réjane Pratelli ◽  
Shi Yu ◽  
Brett Shelley ◽  
Eva Collakova ◽  
...  

AbstractAmino acid transporters play a critical role in distributing amino acids within the cell compartments and between the plant organs. Despite this importance, relatively few amino acid transporter genes have been characterized and their role elucidated with certainty. Two main families of proteins encode amino acid transporters in plants: the Amino Acid-Polyamine-Organocation superfamily, containing mostly importers, and the Usually Multiple Acids Move In and out Transporter family, apparently encoding exporters, totaling about 100 genes in Arabidopsis alone. Knowledge on UMAMITs is scarce, focused on six Arabidopsis genes and a handful of genes from other species. To get insight into the role of the members of this family and provide data to be used for future characterization, we studied the evolution of the UMAMITs in plants, and determined the functional properties, the structure, and the localization of the 44 Arabidopsis UMAMITs. Our analysis showed that the AtUMAMIT are essentially localized at the tonoplast or the plasma membrane, and that most of them are able to export amino acids from the cytosol, confirming a role in intra- and inter-cellular amino acid transport. As an example, this set of data was used to hypothesize the role of a few AtUMAMITs in the plant and the cell.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S42-S42
Author(s):  
Kohei Sugihara ◽  
Nobuhiko Kamada

Abstract Background Recent accumulating evidence suggests that amino acids have crucial roles in the maintenance of intestinal homeostasis. In inflammatory bowel disease (IBD), amino acid metabolism is changed in both host and the gut microbiota. Among amino acids, L-serine plays a central role in several metabolic processes that are essential for the growth and survival of both mammalian and bacterial cells. However, the role of L-serine in intestinal homeostasis and IBD remains incompletely understood. In this study, we investigated the effect of dietary L-serine on intestinal inflammation in a murine model of colitis. Methods Specific pathogen-free (SPF) mice were fed either a control diet (amino acid-based diet) or an L-serine-deficient diet (SDD). Colitis was induced by the treatment of dextran sodium sulfate (DSS). The gut microbiome was analyzed by 16S rRNA sequencing. We also evaluate the effect of dietary L-serine in germ-free mice and gnotobiotic mice that were colonized by a consortium of non-mucolytic bacterial strains or the consortium plus mucolytic bacterial strains. Results We found that the SDD exacerbated experimental colitis in SPF mice. However, the severity of colitis in SDD-fed mice was comparable to control diet-fed mice in germ-free condition, suggesting that the gut microbiota is required for exacerbation of colitis caused by the restriction of dietary L-serine. The gut microbiome analysis revealed that dietary L-serine restriction fosters the blooms of a mucus-degrading bacterium Akkermansia muciniphila and adherent-invasive Escherichia coli in the inflamed gut. Consistent with the expansion of mucolytic bacteria, SDD-fed mice showed a loss of the intestinal mucus layer. Dysfunction of the mucus barrier resulted in increased intestinal permeability, thereby leading to bacterial translocation to the intestinal mucosa, which subsequently increased the severity of colitis. The increased intestinal permeability and subsequent bacterial translocation were observed in SDD-fed gnotobiotic mice that colonized by mucolytic bacteria. In contrast, dietary L-serine restriction did not alter intestinal barrier integrity in gnotobiotic mice that colonized only by non-mucolytic bacteria. Conclusion Our results suggest that dietary L-serine regulates the integrity of the intestinal mucus barrier during inflammation by limiting the expansion of mucus degrading bacteria.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Pablo Mier ◽  
Miguel A. Andrade-Navarro

Abstract According to the amino acid composition of natural proteins, it could be expected that all possible sequences of three or four amino acids will occur at least once in large protein datasets purely by chance. However, in some species or cellular context, specific short amino acid motifs are missing due to unknown reasons. We describe these as Avoided Motifs, short amino acid combinations missing from biological sequences. Here we identify 209 human and 154 bacterial Avoided Motifs of length four amino acids, and discuss their possible functionality according to their presence in other species. Furthermore, we determine two Avoided Motifs of length three amino acids in human proteins specifically located in the cytoplasm, and two more in secreted proteins. Our results support the hypothesis that the characterization of Avoided Motifs in particular contexts can provide us with information about functional motifs, pointing to a new approach in the use of molecular sequences for the discovery of protein function.


1993 ◽  
Vol 268 (36) ◽  
pp. 26941-26949
Author(s):  
A D'Aniello ◽  
G D'Onofrio ◽  
M Pischetola ◽  
G D'Aniello ◽  
A Vetere ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1018
Author(s):  
Hiroaki Yokota

Helicases are nucleic acid-unwinding enzymes that are involved in the maintenance of genome integrity. Several parts of the amino acid sequences of helicases are very similar, and these quite well-conserved amino acid sequences are termed “helicase motifs”. Previous studies by X-ray crystallography and single-molecule measurements have suggested a common underlying mechanism for their function. These studies indicate the role of the helicase motifs in unwinding nucleic acids. In contrast, the sequence and length of the C-terminal amino acids of helicases are highly variable. In this paper, I review past and recent studies that proposed helicase mechanisms and studies that investigated the roles of the C-terminal amino acids on helicase and dimerization activities, primarily on the non-hexermeric Escherichia coli (E. coli) UvrD helicase. Then, I center on my recent study of single-molecule direct visualization of a UvrD mutant lacking the C-terminal 40 amino acids (UvrDΔ40C) used in studies proposing the monomer helicase model. The study demonstrated that multiple UvrDΔ40C molecules jointly participated in DNA unwinding, presumably by forming an oligomer. Thus, the single-molecule observation addressed how the C-terminal amino acids affect the number of helicases bound to DNA, oligomerization, and unwinding activity, which can be applied to other helicases.


1984 ◽  
Vol 62 (5) ◽  
pp. 276-279 ◽  
Author(s):  
C. H. Lin ◽  
W. Chung ◽  
K. P. Strickland ◽  
A. J. Hudson

An isozyme of S-adenosylmethionine synthetase has been purified to homogeneity by ammonium sulfate fractionation, DEAE-cellulose column chromatography, and gel filtration on a Sephadex G-200 column. The purified enzyme is very unstable and has a molecular weight of 120 000 consisting of two identical subunits. Amino acid analysis on the purified enzyme showed glycine, glutamate, and aspartate to be the most abundant and the aromatic amino acids to be the least abundant. It possesses tripolyphosphatase activity which can be stimulated five to six times by S-adenosylmethionine (20–40 μM). The findings support the conclusion that an enzyme-bound tripolyphosphate is an obligatory intermediate in the enzymatic synthesis of S-adenosylmethionine from ATP and methionine.


1972 ◽  
Vol 54 (2) ◽  
pp. 279-294 ◽  
Author(s):  
David C. Shephard ◽  
Wendy B. Levin

The ability of chloroplasts isolated from Acetabulana mediterranea to synthesize the protein amino acids has been investigated. When this chloroplast isolate was presented with 14CO2 for periods of 6–8 hr, tracer was found in essentially all amino acid species of their hydrolyzed protein Phenylalanine labeling was not detected, probably due to technical problems, and hydroxyproline labeling was not tested for The incorporation of 14CO2 into the amino acids is driven by light and, as indicated by the amount of radioactivity lost during ninhydrin decarboxylation on the chromatograms, the amino acids appear to be uniformly labeled. The amino acid labeling pattern of the isolate is similar to that found in plastids labeled with 14CO2 in vivo. The chloroplast isolate did not utilize detectable amounts of externally supplied amino acids in light or, with added adenosine triphosphate (ATP), in darkness. It is concluded that these chloroplasts are a tight cytoplasmic compartment that is independent in supplying the amino acids used for its own protein synthesis. These results are discussed in terms of the role of contaminants in the observed synthesis, the "normalcy" of Acetabularia chloroplasts, the synthetic pathways for amino acids in plastids, and the implications of these observations for cell compartmentation and chloroplast autonomy.


1997 ◽  
Vol 41 (2) ◽  
pp. 314-318 ◽  
Author(s):  
E Hannecart-Pokorni ◽  
F Depuydt ◽  
L de wit ◽  
E van Bossuyt ◽  
J Content ◽  
...  

The amikacin resistance gene aac(6')-Im [corrected] from Citrobacter freundii Cf155 encoding an aminoglycoside 6'-N-acetyltransferase was characterized. The gene was identified as a coding sequence of 521 bp located down-stream from the 5' conserved segment of an integron. The sequence of this aac(6')-Im [corrected] gene corresponded to a protein of 173 amino acids which possessed 64.2% identity in a 165-amino-acid overlap with the aac(6')-Ia gene product (F.C. Tenover, D. Filpula, K.L. Phillips, and J. J. Plorde, J. Bacteriol. 170:471-473, 1988). By using PCR, the aac(6')-Im [corrected] gene could be detected in 8 of 86 gram-negative clinical isolates from two Belgian hospitals, including isolates of Citrobacter, Klebsiella spp., and Escherichia coli. PCR mapping of the aac(6')-Im [corrected] gene environment in these isolates indicated that the gene was located within a sulI-type integron; the insert region is 1,700 bases long and includes two genes cassettes, the second being ant (3")-Ib.


Sign in / Sign up

Export Citation Format

Share Document