scholarly journals Ribosomal protein imbalance launches a C/EBP-based program to preserve tissue integrity

2018 ◽  
Author(s):  
Ludovic Baillon

SummaryGenes encoding ribosomal proteins are expressed at rate limiting levels, rendering their biological function highly sensitive to the copy-number variation that results from genomic instability. Cells with a reduced number of ribosomal protein genes (RPGs) are eliminated, when intermingled with wild type cells, via a process known as cell competition. The mechanisms underlying this phenomenon are poorly understood. Here we report the function of a CCAAT-Enhancer-Binding Protein (C/EBP), Xrp1, that is critically required for the elimination of cells with a hemizygous RPG genotype. In such cells, Xrp1 is transcriptionally upregulated by an autoregulatory loop and is able to trigger cell elimination. Since genomic instability is likely to cause the loss of a haploinsufficient RPG, we propose a molecular model of how RPGs, together with a C/EBP-dependent transcriptional program, could preserve the genomic integrity of tissues.

1999 ◽  
Vol 181 (10) ◽  
pp. 3136-3143 ◽  
Author(s):  
Nelson Lopez ◽  
John Halladay ◽  
William Walter ◽  
Elizabeth A. Craig

ABSTRACT Genes encoding ribosomal proteins and other components of the translational apparatus are coregulated to efficiently adjust the protein synthetic capacity of the cell. Ssb, a Saccharomyces cerevisiae Hsp70 cytosolic molecular chaperone, is associated with the ribosome-nascent chain complex. To determine whether this chaperone is coregulated with ribosomal proteins, we studied the mRNA regulation of SSB under several environmental conditions. Ssb and the ribosomal protein rpL5 mRNAs were up-regulated upon carbon upshift and down-regulated upon amino acid limitation, unlike the mRNA of another cytosolic Hsp70, Ssa. Ribosomal protein and Ssb mRNAs, like many mRNAs, are down-regulated upon a rapid temperature upshift. The mRNA reduction of several ribosomal protein genes and Ssb was delayed by the presence of an allele, EXA3-1, of the gene encoding the heat shock factor (HSF). However, upon a heat shock theEXA3-1 mutation did not significantly alter the reduction in the mRNA levels of two genes encoding proteins unrelated to the translational apparatus. Analysis of gene fusions indicated that the transcribed region, but not the promoter of SSB, is sufficient for this HSF-dependent regulation. Our studies suggest that Ssb is regulated like a core component of the ribosome and that HSF is required for proper regulation of SSB and ribosomal mRNA after a temperature upshift.


Author(s):  
Suman Lata ◽  
Anshul Watts ◽  
S. R. Bhat

In Arabidopsis, most of the genes encoding mitochondrial ribosomal proteins are located in the nucleus and only seven are present in the mitochondrial genome. Assembly of a functional ribosome requires coordinated expression of ribosomal protein encoding genes located in both these organelles. Genes and promoters of nuclear encoded mitochondrial ribosomal protein coding genes of plants have not been well characterized so far. In the present study we have characterized Arabidopsis thaliana SALK mutant lines with T-DNA insertion in Rps14 or Rps19 gene. The location of T-DNA insertion in the mutant lines was confirmed and plants homozygous and hemizygous for TDNA insertion were identified for both Rps14 and Rps19 genes. In homozygous T-DNA mutant lines of both Rps14 and Rps19 genes, the expression was estimated using RTPCR. Rps14 and Rps19 transcripts similar to wild type were present in homozygous mutant plants of Rps14 and Rps19 which indicated that T-DNA insertion has not affected their expression.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 375-386 ◽  
Author(s):  
A Vincent ◽  
S W Liebman

Abstract The accurate synthesis of proteins is crucial to the existence of a cell. In yeast, several genes that affect the fidelity of translation have been identified (e.g., omnipotent suppressors, antisuppressors and allosuppressors). We have found that the dominant omnipotent suppressor SUP46 encodes the yeast ribosomal protein S13. S13 is encoded by two similar genes, but only the sup46 copy of the gene is able to fully complement the recessive phenotypes of SUP46 mutations. Both copies of the S13 genes contain introns. Unlike the introns of other duplicated ribosomal protein genes which are highly diverged, the duplicated S13 genes have two nearly identical DNA sequences of 25 and 31 bp in length within their introns. The SUP46 protein has significant homology to the S4 ribosomal protein in prokaryotic-type ribosomes. S4 is encoded by one of the ram (ribosomal ambiguity) genes in Escherichia coli which are the functional equivalent of omnipotent suppressors in yeast. Thus, SUP46 and S4 demonstrate functional as well as sequence conservation between prokaryotic and eukaryotic ribosomal proteins. SUP46 and S4 are most similar in their central amino acid sequences. Interestingly, the alterations resulting from the SUP46 mutations and the segment of the S4 protein involved in binding to the 16S rRNA are within this most conserved region.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1170-1170
Author(s):  
Alison M. Taylor ◽  
Jessica M. Humphries ◽  
Richard M. White ◽  
Ryan D. Murphey ◽  
Caroline E. Burns ◽  
...  

Abstract Abstract 1170 Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by red cell aplasia and craniofacial abnormalities. Ribosomal protein genes are often mutated in patients with this disease, but the mechanism of action is still being investigated. To elucidate the effect of mutations in ribosomal proteins, we are studying a zebrafish rps29 mutant with hematopoietic and endothelial defects. Hematopoietic stem cells (HSCs) in rps29-/- embryos are significantly decreased, as assayed by runx1 and cmyb expression. Although the aorta and posterior cardinal vein form in the mutant, intersomitic vessel formation is affected. To test whether decreased p53 levels can rescue these defects, we crossed fish with mutated p53 into the rps29 background. In rps29-/-;p53-/- embryos, the vascular and HSC phenotypes are rescued, demonstrating that p53 may be required for these effects of rps29 knockdown. We performed a microarray comparing rps29-/- embryos and their siblings to identify genes that are differentially expressed in the mutant. Using gene set enrichment analysis (GSEA), we determined that the list of genes up-regulated in the rps29 mutant is enriched for genes up-regulated by p53 in response to irradiation. Many of the genes identified have known roles in apoptosis and stress response. We have also identified genes whose expression correlates with the number of wildtype copies of rps29. Orthopedia homolog a (otpa), which is specifically expressed in forebrain and hindbrain tissues at 24 hours post fertilization (hpf), is decreased in heterozygous siblings and further decreased in homozygous siblings. In addition, p53 knockdown partially increases otpa levels in the mutant. These data support a model where p53 activation is one of the critical downstream mediators of rps29 knockdown in several tissues, but the mechanism of tissue specificity remains unclear. The otpa phenotype suggests that regulation of some genes is dependent on rps29 levels. The zebrafish rps29 mutant will be a useful model for understanding how a decrease in ribosomal protein levels can cause specific defects in hematopoietic and neural tissues. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 969-977 ◽  
Author(s):  
Francesco Amaldi ◽  
Olga Camacho-Vanegas ◽  
Francesco Cecconi ◽  
Fabrizio Loreni ◽  
Beatrice Cardinali ◽  
...  

In Xenopus laevis, as well as in other vertebrates, ribosomal proteins (r-proteins) are coded by a class of genes that share some organizational and structural features. One of these, also common to genes coding for other proteins involved in the translation apparatus synthesis and function, is the presence within their introns of sequences coding for small nucleolar RNAs. Another feature is the presence of common structures, mainly in the regions surrounding the 5′ ends, involved in their coregulated expression. This is attained at various regulatory levels: transcriptional, posttranscriptional, and translational. Particular attention is given here to regulation at the translational level, which has been studied during Xenopus oogenesis and embryogenesis and also during nutritional changes of Xenopus cultured cells. This regulation, which responds to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA (ribosomal protein mRNA) engaged on polysomes. A typical 5′ untranslated region characterizing all vertebrate rp-mRNAs analyzed to date is responsible for this translational behaviour: it is always short and starts with an 8–12 nucleotide polypyrimidine tract. This region binds in vitro some proteins that can represent putative trans-acting factors for this translational regulation.Key words: ribosomal proteins, snoRNA, translational regulation, Xenopus laevis.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6943-6951 ◽  
Author(s):  
Jason E. Farrar ◽  
Adrianna Vlachos ◽  
Eva Atsidaftos ◽  
Hannah Carlson-Donohoe ◽  
Thomas C. Markello ◽  
...  

Abstract Diamond-Blackfan anemia (DBA) is a congenital BM failure syndrome characterized by hypoproliferative anemia, associated physical abnormalities, and a predisposition to cancer. Perturbations of the ribosome appear to be critically important in DBA; alterations in 9 different ribosomal protein genes have been identified in multiple unrelated families, along with rarer abnormalities of additional ribosomal proteins. However, at present, only 50% to 60% of patients have an identifiable genetic lesion by ribosomal protein gene sequencing. Using genome-wide single-nucleotide polymorphism array to evaluate for regions of recurrent copy variation, we identified deletions at known DBA-related ribosomal protein gene loci in 17% (9 of 51) of patients without an identifiable mutation, including RPS19, RPS17, RPS26, and RPL35A. No recurrent regions of copy variation at novel loci were identified. Because RPS17 is a duplicated gene with 4 copies in a diploid genome, we demonstrate haploinsufficient RPS17 expression and a small subunit ribosomal RNA processing abnormality in patients harboring RPS17 deletions. Finally, we report the novel identification of variable mosaic loss involving known DBA gene regions in 3 patients from 2 kindreds. These data suggest that ribosomal protein gene deletion is more common than previously suspected and should be considered a component of the initial genetic evaluation in cases of suspected DBA.


2020 ◽  
Author(s):  
Alex G Johnson ◽  
Ryan A Flynn ◽  
Christopher P Lapointe ◽  
Yaw Shin Ooi ◽  
Michael L Zhao ◽  
...  

Abstract In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.


2019 ◽  
Vol 48 (4) ◽  
pp. 1954-1968 ◽  
Author(s):  
Mustafa Malik Ghulam ◽  
Mathieu Catala ◽  
Sherif Abou Elela

Abstract In Saccharomyces cerevisiae, most ribosomal proteins are synthesized from duplicated genes, increasing the potential for ribosome heterogeneity. However, the contribution of these duplicated genes to ribosome production and the mechanism determining their relative expression remain unclear. Here we demonstrate that in most cases, one of the two gene copies generate the bulk of the active ribosomes under normal growth conditions, while the other copy is favored only under stress. To understand the origin of these differences in paralog expression and their contribution to ribosome heterogeneity we used RNA polymerase II ChIP-Seq, RNA-seq, polyribosome association and peptide-based mass-spectrometry to compare their transcription potential, splicing, mRNA abundance, translation potential, protein abundance and incorporation into ribosomes. In normal conditions a post-transcriptional expression hierarchy of the duplicated ribosomal protein genes is the product of the efficient splicing, high stability and efficient translation of the major paralog mRNA. Exposure of the cell to stress modifies the expression ratio of the paralogs by repressing the expression of the major paralog and thus increasing the number of ribosomes carrying the minor paralog. Together the data indicate that duplicated ribosomal protein genes underlie a modular network permitting the modification of ribosome composition in response to changing growth conditions.


Sign in / Sign up

Export Citation Format

Share Document