scholarly journals Homeostatic versus pathological functions of Dual Leucine Zipper Kinase in the adult mouse brain

2018 ◽  
Author(s):  
Sunil Goodwani ◽  
Mary E Hamby ◽  
Virginie Buggia-Prevot ◽  
Paul Acton ◽  
Celia Fernandez ◽  
...  

AbstractDual Leucine Zipper Kinase (DLK, Map3k12), is an injury-induced axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). DLK is generally considered to be inactive in healthy neurons until induced by injury. However we report that DLK in the cerebellum appears constitutively active and drives nuclear p-c-Jun in cerebellar granule neurons in the absence of injury. In contrast the adult hippocampus expresses similar levels of apparently constitutively active DLK, but p-c-Jun is lower and does not accumulate in the nucleus. Injury is required there for p-c-jun nuclear expression, because in the rTg4510 model of tauopathy, where there is extensive hippocampal pathology, nuclear p-c-Jun is induced in a DLK-dependent manner. This context-specific regulation of DLK signaling could relate to availability of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1) whereas the hippocampus contains more JIP-3 and Plenty of SH3 (POSH). To understand how DLK signaling differs between the hippocampus and cerebellum, we selectively blocked DLK and measured changes in protein and mRNA expression. In the cerebellum, p-c-Jun levels correlated with synaptophysin, suggesting a link between DLK activity and synaptic maintenance. In rTg4510 mice, hippocampal p-c-Jun instead correlated with markers of neuronal injury and gliosis (Iba1 and GFAP). RNA sequencing revealed that in both brain regions DLK inhibition reduced expression of JNK/c-Jun pathway components and a novel set of co-regulated genes. In the cerebellum, Jun mRNA levels were co-regulated with genes mapping to metabolic pathways, while in the rTg4510 hippocampus, Jun-correlated mRNAs correspond primarily to neuroinflammation. These data suggest that in the uninjured cerebellum, DLK/p-c-Jun signaling is linked to synaptic regulation, but in the hippocampus, pathologically activated DLK/p-c-Jun signaling regulates genes associated with the injury response.

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3283-3290 ◽  
Author(s):  
Tetsurou Satoh ◽  
Takahiro Ishizuka ◽  
Takuya Tomaru ◽  
Satoshi Yoshino ◽  
Yasuyo Nakajima ◽  
...  

The 26S proteasome, which degrades ubiquitinated proteins, appears to contribute to the cyclical loading of androgen receptor (AR) to androgen response elements of target gene promoters; however, the mechanism whereby the 26S proteasome modulates AR recruitment remains unknown. Using yeast two-hybrid screening, we previously identified Tat-binding protein-1 (TBP-1), an adenosine triphosphatase of 19S regulatory particles of the 26S proteasome, as a transcriptional coactivator of thyroid hormone receptor. Independently, TBP-1-interacting protein (TBPIP) was also identified as a coactivator of several nuclear receptors, including AR. Here, we investigated whether TBP-1 could interact with and modulate transcriptional activation by AR cooperatively with TBPIP. TBP-1 mRNA was ubiquitously expressed in human tissues, including the testis and prostate, as well as in LNCaP cells. TBP-1 directly bound TBPIP through the amino-terminal domain possessing the leucine zipper structure. AR is physically associated with TBP-1 and TBPIP in vitro and in LNCaP cells. TBP-1 similarly and additively augmented AR-mediated transcription upon coexpression with TBPIP, and the ATPase domain, as well as leucine zipper structure in TBP-1, was essential for transcriptional enhancement. Overexpression of TBP-1 did not alter AR protein and mRNA levels. In the chromatin immunoprecipitation assay, TBP-1 was transiently recruited to the proximal androgen response element of the prostate-specific antigen gene promoter in a ligand-dependent manner in LNCaP cells. These findings suggest that a component of 19S regulatory particles directly binds AR and might participate in AR-mediated transcriptional activation in cooperation with TBPIP.


1999 ◽  
Vol 337 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Lene E. JOHANNESSEN ◽  
Sigrun L. KNARDAL ◽  
Inger Helene MADSHUS

DNA synthesis was inhibited in A431 cells by epidermal growth factor (EGF) in a p21/CIP1-dependent manner [where CIP1 is cyclin-dependent kinase (CDK)-interacting protein 1]. When 1 or 10 nM EGF was added, the level of p21/CIP1 was increased to the same extent, and the protein level peaked after approx. 5 h of incubation. The increase in p21/CIP1 mRNA upon addition of EGF was rapid, and was enhanced in the presence of cycloheximide. The half-life of p21/CIP1 mRNA in EGF-treated A431 cells was increased approx. 2-fold; this is in contrast with the case in MCF-7 cells with normal p53, in which the half-life of p21/CIP1 mRNA was not increased upon addition of EGF. This increased stability accounts for most of the increase in mRNA levels observed in A431 cells during short incubation periods. Additionally, upon prolonged incubation of A431 cells with EGF, the half-life of the protein was also increased compared with that in untreated cells and in cells treated with EGF for short time periods. Nuclear run-on assays demonstrated only marginal stimulation of transcription by 10 or 1 nM EGF, or by 10 ng/ml tumour necrosis factor α. Our results indicate that the most important mechanisms by which EGF increases p21/CIP1 protein levels in A431 cells are post-transcriptional and post-translational stabilization.


2020 ◽  
Vol 21 (14) ◽  
pp. 4849
Author(s):  
Sunil Goodwani ◽  
Celia Fernandez ◽  
Paul J. Acton ◽  
Virginie Buggia-Prevot ◽  
Morgan L. McReynolds ◽  
...  

Dual leucine zipper kinase (DLK, Map3k12) is an axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). In peripheral nerves DLK is generally inactive until induced by injury, after which it transmits signals to the nucleus via retrograde transport. Here we report that in contrast to this mode of regulation, in the uninjured adult mouse cerebellum, DLK constitutively drives nuclear p-c-Jun in cerebellar granule neurons, whereas in the forebrain, DLK is similarly expressed and active, but nuclear p-c-Jun is undetectable. When neurodegeneration results from mutant human tau in the rTg4510 mouse model, p-c-Jun then accumulates in neuronal nuclei in a DLK-dependent manner, and the extent of p-c-Jun correlates with markers of synaptic loss and gliosis. This regional difference in DLK-dependent nuclear p-c-Jun accumulation could relate to differing levels of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1), whereas the forebrain contains more JIP-3 and plenty of SH3 (POSH). To characterize the functional differences between constitutive- versus injury-induced DLK signaling, RNA sequencing was performed after DLK inhibition in the cerebellum and in the non-transgenic and rTg4510 forebrain. In all contexts, DLK inhibition reduced a core set of transcripts that are associated with the JNK pathway. Non-transgenic forebrain showed almost no other transcriptional changes in response to DLK inhibition, whereas the rTg4510 forebrain and the cerebellum exhibited distinct differentially expressed gene signatures. In the cerebellum, but not the rTg4510 forebrain, pathway analysis indicated that DLK regulates insulin growth factor-1 (IGF1) signaling through the transcriptional induction of IGF1 binding protein-5 (IGFBP5), which was confirmed and found to be functionally relevant by measuring signaling through the IGF1 receptor. Together these data illuminate the complex multi-functional nature of DLK signaling in the central nervous system (CNS) and demonstrate its role in homeostasis as well as tau-mediated neurodegeneration.


1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


2020 ◽  
Author(s):  
Cecilia Blair Levandowski ◽  
T. Jones ◽  
Margaret Gruca ◽  
Sivapriya Ramamoorthy ◽  
Robin Dowell ◽  
...  

2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Michittra Boonchan ◽  
Hideki Arimochi ◽  
Kunihiro Otsuka ◽  
Tomoko Kobayashi ◽  
Hisanori Uehara ◽  
...  

AbstractThe sensing of various extrinsic stimuli triggers the receptor-interacting protein kinase-3 (RIPK3)-mediated signaling pathway, which leads to mixed-lineage kinase-like (MLKL) phosphorylation followed by necroptosis. Although necroptosis is a form of cell death and is involved in inflammatory conditions, the roles of necroptosis in acute pancreatitis (AP) remain unclear. In the current study, we administered caerulein to Ripk3- or Mlkl-deficient mice (Ripk3−/− or Mlkl−/− mice, respectively) and assessed the roles of necroptosis in AP. We found that Ripk3−/− mice had significantly more severe pancreatic edema and inflammation associated with macrophage and neutrophil infiltration than control mice. Consistently, Mlkl−/− mice were more susceptible to caerulein-induced AP, which occurred in a time- and dose-dependent manner, than control mice. Mlkl−/− mice exhibit weight loss, edematous pancreatitis, necrotizing pancreatitis, and acinar cell dedifferentiation in response to tissue damage. Genetic deletion of Mlkl resulted in downregulation of the antiapoptotic genes Bclxl and Cflar in association with increases in the numbers of apoptotic cells, as detected by TUNEL assay. These findings suggest that RIPK3 and MLKL-mediated necroptosis exerts protective effects in AP and caution against the use of necroptosis inhibitors for AP treatment.


2021 ◽  
Vol 9 (1) ◽  
pp. e001905
Author(s):  
Jung-Hee Hong ◽  
Dae-Hee Kim ◽  
Moon-Kyu Lee

IntroductionThe concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels.Research design and methodsTo investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function.ResultsChronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats.ConclusionThese results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.


Author(s):  
Archana Venkataraman ◽  
Sarah C. Hunter ◽  
Maria Dhinojwala ◽  
Diana Ghebrezadik ◽  
JiDong Guo ◽  
...  

AbstractFear generalization and deficits in extinction learning are debilitating dimensions of Post-Traumatic Stress Disorder (PTSD). Most understanding of the neurobiology underlying these dimensions comes from studies of cortical and limbic brain regions. While thalamic and subthalamic regions have been implicated in modulating fear, the potential for incerto-thalamic pathways to suppress fear generalization and rescue deficits in extinction recall remains unexplored. We first used patch-clamp electrophysiology to examine functional connections between the subthalamic zona incerta and thalamic reuniens (RE). Optogenetic stimulation of GABAergic ZI → RE cell terminals in vitro induced inhibitory post-synaptic currents (IPSCs) in the RE. We then combined high-intensity discriminative auditory fear conditioning with cell-type-specific and projection-specific optogenetics in mice to assess functional roles of GABAergic ZI → RE cell projections in modulating fear generalization and extinction recall. In addition, we used a similar approach to test the possibility of fear generalization and extinction recall being modulated by a smaller subset of GABAergic ZI → RE cells, the A13 dopaminergic cell population. Optogenetic stimulation of GABAergic ZI → RE cell terminals attenuated fear generalization and enhanced extinction recall. In contrast, optogenetic stimulation of dopaminergic ZI → RE cell terminals had no effect on fear generalization but enhanced extinction recall in a dopamine receptor D1-dependent manner. Our findings shed new light on the neuroanatomy and neurochemistry of ZI-located cells that contribute to adaptive fear by increasing the precision and extinction of learned associations. In so doing, these data reveal novel neuroanatomical substrates that could be therapeutically targeted for treatment of PTSD.


2021 ◽  
pp. 154596832110063
Author(s):  
Keigo Tamakoshi ◽  
Madoka Maeda ◽  
Shinnosuke Nakamura ◽  
Nae Murohashi

Background Very early exercise has been reported to exacerbate motor dysfunction; however, its mechanism is largely unknown. Objective This study examined the effect of very early exercise on motor recovery and associated brain damage following intracerebral hemorrhage (ICH) in rats. Methods Collagenase solution was injected into the left striatum to induce ICH. Rats were randomly assigned to receive placebo surgery without exercise (SHAM) or ICH without (ICH) or with very early exercise within 24 hours of surgery (ICH+VET). We observed sensorimotor behaviors before surgery, and after surgery preexercise and postexercise. Postexercise brain tissue was collected 27 hours after surgery to investigate the hematoma area, brain edema, and Il1b, Tgfb1, and Igf1 mRNA levels in the striatum and sensorimotor cortex using real-time reverse transcription polymerase chain reaction. NeuN, PSD95, and GFAP protein expression was analyzed by Western blotting. Results We observed significantly increased skillful sensorimotor impairment in the horizontal ladder test and significantly higher Il1b mRNA levels in the striatum of the ICH+VET group compared with the ICH group. NeuN protein expression was significantly reduced in both brain regions of the ICH+VET group compared with the SHAM group. Conclusion Our results suggest that very early exercise may be associated with an exacerbation of motor dysfunction because of increased neuronal death and region-specific changes in inflammatory factors. These results indicate that implementing exercise within 24 hours after ICH should be performed with caution.


Sign in / Sign up

Export Citation Format

Share Document