scholarly journals Tat-Binding Protein-1 (TBP-1), an ATPase of 19S Regulatory Particles of the 26S Proteasome, Enhances Androgen Receptor Function in Cooperation with TBP-1-Interacting Protein/Hop2

Endocrinology ◽  
2009 ◽  
Vol 150 (7) ◽  
pp. 3283-3290 ◽  
Author(s):  
Tetsurou Satoh ◽  
Takahiro Ishizuka ◽  
Takuya Tomaru ◽  
Satoshi Yoshino ◽  
Yasuyo Nakajima ◽  
...  

The 26S proteasome, which degrades ubiquitinated proteins, appears to contribute to the cyclical loading of androgen receptor (AR) to androgen response elements of target gene promoters; however, the mechanism whereby the 26S proteasome modulates AR recruitment remains unknown. Using yeast two-hybrid screening, we previously identified Tat-binding protein-1 (TBP-1), an adenosine triphosphatase of 19S regulatory particles of the 26S proteasome, as a transcriptional coactivator of thyroid hormone receptor. Independently, TBP-1-interacting protein (TBPIP) was also identified as a coactivator of several nuclear receptors, including AR. Here, we investigated whether TBP-1 could interact with and modulate transcriptional activation by AR cooperatively with TBPIP. TBP-1 mRNA was ubiquitously expressed in human tissues, including the testis and prostate, as well as in LNCaP cells. TBP-1 directly bound TBPIP through the amino-terminal domain possessing the leucine zipper structure. AR is physically associated with TBP-1 and TBPIP in vitro and in LNCaP cells. TBP-1 similarly and additively augmented AR-mediated transcription upon coexpression with TBPIP, and the ATPase domain, as well as leucine zipper structure in TBP-1, was essential for transcriptional enhancement. Overexpression of TBP-1 did not alter AR protein and mRNA levels. In the chromatin immunoprecipitation assay, TBP-1 was transiently recruited to the proximal androgen response element of the prostate-specific antigen gene promoter in a ligand-dependent manner in LNCaP cells. These findings suggest that a component of 19S regulatory particles directly binds AR and might participate in AR-mediated transcriptional activation in cooperation with TBPIP.

2018 ◽  
Author(s):  
Sunil Goodwani ◽  
Mary E Hamby ◽  
Virginie Buggia-Prevot ◽  
Paul Acton ◽  
Celia Fernandez ◽  
...  

AbstractDual Leucine Zipper Kinase (DLK, Map3k12), is an injury-induced axonal protein that governs the balance between degeneration and regeneration through its downstream effectors c-jun N-terminal kinase (JNK) and phosphorylated c-jun (p-c-Jun). DLK is generally considered to be inactive in healthy neurons until induced by injury. However we report that DLK in the cerebellum appears constitutively active and drives nuclear p-c-Jun in cerebellar granule neurons in the absence of injury. In contrast the adult hippocampus expresses similar levels of apparently constitutively active DLK, but p-c-Jun is lower and does not accumulate in the nucleus. Injury is required there for p-c-jun nuclear expression, because in the rTg4510 model of tauopathy, where there is extensive hippocampal pathology, nuclear p-c-Jun is induced in a DLK-dependent manner. This context-specific regulation of DLK signaling could relate to availability of JNK scaffolding proteins, as the cerebellum preferentially expresses JNK-interacting protein-1 (JIP-1) whereas the hippocampus contains more JIP-3 and Plenty of SH3 (POSH). To understand how DLK signaling differs between the hippocampus and cerebellum, we selectively blocked DLK and measured changes in protein and mRNA expression. In the cerebellum, p-c-Jun levels correlated with synaptophysin, suggesting a link between DLK activity and synaptic maintenance. In rTg4510 mice, hippocampal p-c-Jun instead correlated with markers of neuronal injury and gliosis (Iba1 and GFAP). RNA sequencing revealed that in both brain regions DLK inhibition reduced expression of JNK/c-Jun pathway components and a novel set of co-regulated genes. In the cerebellum, Jun mRNA levels were co-regulated with genes mapping to metabolic pathways, while in the rTg4510 hippocampus, Jun-correlated mRNAs correspond primarily to neuroinflammation. These data suggest that in the uninjured cerebellum, DLK/p-c-Jun signaling is linked to synaptic regulation, but in the hippocampus, pathologically activated DLK/p-c-Jun signaling regulates genes associated with the injury response.


Parasitology ◽  
2003 ◽  
Vol 127 (4) ◽  
pp. 337-347 ◽  
Author(s):  
D. RAM ◽  
E. ZIV ◽  
F. LANTNER ◽  
I. SCHECHTER

A distinct 8 kDa calcium-binding protein (CaBP) is preferentially expressed at the cercarial stage during the life-cycle of the schistosome. Available data indicate that this CaBP may be associated with tissue/organ remodelling (involving protein degradation and synthesis of new proteins) during transformation of the cercariae from free-living form in water to parasitic life in the vertebrate host. Many CaBP molecules (e.g. calmodulin) show Ca++-dependent interaction with target proteins and thus modulate their activity. Accordingly, the parasite 8 kDa CaBP was used as a probe to clone and identify putative target protein(s) directly by binding interaction. Screening of schistosome λgt11 expression library with radio-iodinated CaBP yielded several overlapping clones showing Ca++-dependent binding of the CaBP. Sequence analyses revealed that these clones encode the S5a/Rpn10 multiubiquitin-binding protein which is a component of the regulatory 19S subunit of the 26S proteasome. The schistosome molecule, designated SmS5a, is 420 amino acids long. The nearly full length molecule (Gln3–Ser420) as well as the amino terminal (N-S5a, Gln3–Gly200) and carboxyl-terminal (C-S5a, Asp225–Ser420) portions were synthesized in bacteria, purified, and antibodies to the parasite SmS5a were prepared. Interaction between SmS5a and the 8 kDa CaBP in a Ca++-dependent manner was found under various experimental conditions: CaBP-Sepharose bound soluble SmS5a, immobilized SmS5a bound soluble CaBP, and complex formation was found when both molecules were in solution. Furthermore, it was shown that the C-terminal portion of SmS5a, but not the N-terminal portion of the molecule, reacted with the CaBP. SmS5a synthesized in a cell-free system and Western blots revealed 2 species, conceivably corresponding to the naked molecule (~50 kDa) and the molecule subjected to post-translational modification (~70 kDa). The present studies suggest that proteasome activity may be modulated by calcium, and this modulation is mediated via CaBP molecule(s).


2008 ◽  
Vol 22 (8) ◽  
pp. 1754-1766 ◽  
Author(s):  
Weiwei Chen ◽  
Thoa Dang ◽  
Raymond D. Blind ◽  
Zhen Wang ◽  
Claudio N. Cavasotto ◽  
...  

Abstract The glucocorticoid receptor (GR) is phosphorylated at multiple sites within its N terminus (S203, S211, S226), yet the role of phosphorylation in receptor function is not understood. Using a range of agonists and GR phosphorylation site-specific antibodies, we demonstrated that GR transcriptional activation is greatest when the relative phosphorylation of S211 exceeds that of S226. Consistent with this finding, a replacement of S226 with an alanine enhances GR transcriptional response. Using a battery of compounds that perturb different signaling pathways, we found that BAPTA-AM, a chelator of intracellular divalent cations, and curcumin, a natural product with antiinflammatory properties, reduced hormone-dependent phosphorylation at S211. This change in GR phosphorylation was associated with its decreased nuclear retention and transcriptional activation. Molecular modeling suggests that GR S211 phosphorylation promotes a conformational change, which exposes a novel surface potentially facilitating cofactor interaction. Indeed, S211 phosphorylation enhances GR interaction with MED14 (vitamin D receptor interacting protein 150). Interestingly, in U2OS cells expressing a nonphosphorylated GR mutant S211A, the expression of IGF-binding protein 1 and interferon regulatory factor 8, both MED14-dependent GR target genes, was reduced relative to cells expressing wild-type receptor across a broad range of hormone concentrations. In contrast, the induction of glucocorticoid-induced leucine zipper, a MED14-independent GR target, was similar in S211A- and wild-type GR-expressing cells at high hormone levels, but was reduced in S211A cells at low hormone concentrations, suggesting a link between GR phosphorylation, MED14 involvement, and receptor occupancy. Phosphorylation also affected the magnitude of repression by GR in a gene-selective manner. Thus, GR phosphorylation at S211 and S226 determines GR transcriptional response by modifying cofactor interaction. Furthermore, the effect of GR S211 phosphorylation is gene specific and, in some cases, dependent upon the amount of activated receptor.


2007 ◽  
Vol 292 (2) ◽  
pp. E513-E522 ◽  
Author(s):  
Andrii Domanskyi ◽  
Fu-Ping Zhang ◽  
Mirja Nurmio ◽  
Jorma J. Palvimo ◽  
Jorma Toppari ◽  
...  

Androgen receptor-interacting protein 4 (ARIP4) belongs to the SNF2 family of proteins involved in chromatin remodeling, DNA excision repair, and homologous recombination. It is a DNA-dependent ATPase, binds to DNA and mononucleosomes, and interacts with androgen receptor (AR) and modulates AR-dependent transactivation. We have examined in this study the expression and cellular localization of ARIP4 during postnatal development of mouse testis. ARIP4 was detected by immunohistochemistry in Sertoli cell nuclei at all ages studied, starting on day 5, and exhibited the highest expression level in adult mice. At the onset of spermatogenesis, ARIP4 expression became evident in spermatogonia, pachytene, and diplotene spermatocytes. Immunoreactive ARIP4 antigen was present in Leydig cell nuclei. In Sertoli cells ARIP4 was expressed in a stage-dependent manner, with high expression levels at stages II–VI and VII–VIII. ARIP4 expression patterns did not differ significantly in testes of wild-type, follicle-stimulating hormone receptor knockout, and luteinizing hormone receptor knockout mice. In testes of hypogonadal mice, ARIP4 was found mainly in interstitial cells and exhibited lower expression in Sertoli and germ cells. In vitro stimulation of rat seminiferous tubule segments with testosterone, FSH, or forskolin did not significantly change stage-specific levels of ARIP4 mRNA. Heterozygous ARIP4+/− mice were haploinsufficient and had reduced levels of Sertoli-cell specific androgen-regulated Rhox5 (also called Pem) mRNA. Collectively, ARIP4 is an AR coregulator in Sertoli cells in vivo, but the expression in the germ cells implies that it has also AR-independent functions in spermatogenesis.


2009 ◽  
Vol 29 (21) ◽  
pp. 5828-5842 ◽  
Author(s):  
Lluis Martorell ◽  
Maurizio Gentile ◽  
Jordi Rius ◽  
Cristina Rodríguez ◽  
Javier Crespo ◽  
...  

ABSTRACT Hypoxia induces apoptosis but also triggers adaptive mechanisms to ensure cell survival. Here we show that the prosurvival effects of hypoxia-inducible factor 1 (HIF-1) in endothelial cells are mediated by neuron-derived orphan receptor 1 (NOR-1). The overexpression of NOR-1 decreased the rate of endothelial cells undergoing apoptosis in cultures exposed to hypoxia, while the inhibition of NOR-1 increased cell apoptosis. Hypoxia upregulated NOR-1 mRNA levels in a time- and dose-dependent manner. Blocking antibodies against VEGF or SU5614 (a VEGF receptor 2 inhibitor) did not prevent hypoxia-induced NOR-1 expression, suggesting that NOR-1 is not induced by the autocrine secretion of VEGF in response to hypoxia. The reduction of HIF-1α protein levels by small interfering RNAs, or by inhibitors of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway or mTOR, significantly counteracted hypoxia-induced NOR-1 upregulation. Intracellular Ca2+ was involved in hypoxia-induced PI3K/Akt activation and in the downstream NOR-1 upregulation. A hypoxia response element mediated the transcriptional activation of NOR-1 induced by hypoxia as we show by transient transfection and chromatin immunoprecipitation assays. Finally, the attenuation of NOR-1 expression reduced both basal and hypoxia-induced cIAP2 (cellular inhibitor of apoptosis protein 2) mRNA levels, while NOR-1 overexpression upregulated cIAP2. Therefore, NOR-1 is a downstream effector of HIF-1 signaling involved in the survival response of endothelial cells to hypoxia.


2005 ◽  
Vol 386 (1) ◽  
pp. 161-168 ◽  
Author(s):  
Chengkang ZHANG ◽  
Dong-Ju SHIN ◽  
Timothy F. OSBORNE

The mammalian gene for SREBP-1 (sterol-regulatory-element-binding protein 1) contains two promoters that control the production of two proteins, SREBP-1a and -1c, and each contains a unique N-terminal transcriptional activation domain, but they are otherwise identical. The relative level of each mRNA varies from tissue to tissue and they respond differently to regulatory stimuli. SREBP-1c is more abundantly expressed in liver, where its level is also regulated by insulin and liver X receptor activators, and it is also autoregulated by SREBPs. In contrast, SREBP-1a mRNA levels are relatively low and constant in different tissues and few studies have specifically analysed its pattern of expression and regulation. In the present study, we show that the promoter for SREBP-1a is contained in a very small promoter-proximal region containing two Sp1 sites. The small and relatively simple structure for its promoter provides an explanation for the low level of SREBP-1a expression. Additionally, since Sp1 has been implicated in the modest regulation of several genes by insulin, its involvement in the expression of the SREBP-1a promoter provides an explanation for the modest insulin regulation observed in animal experiments.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 4023-4037 ◽  
Author(s):  
A. Veraksa ◽  
N. McGinnis ◽  
X. Li ◽  
J. Mohler ◽  
W. McGinnis

The basic-leucine zipper protein Cap ‘n’ collar B (CncB) suppresses the segmental identity function of the Hox gene Deformed (Dfd) in the mandibular segment of Drosophila embryos. CncB is also required for proper development of intercalary, labral and mandibular structures. In this study, we provide evidence that the CncB-mediated suppression of Dfd requires the Drosophila homolog of the mammalian small Maf proteins, Maf-S, and that the suppression occurs even in the presence of high amounts of Dfd protein. Interestingly, the CncB/Maf-S suppressive effect can be partially reversed by overexpression of Homothorax (Hth), suggesting that Hth and Extradenticle proteins antagonize the effects of CncB/Maf-S on Dfd function in the mandibular segment. In embryos, multimers of simple CncB/Maf-S heterodimer sites are transcriptionally activated in response to CncB, and in tissue culture cells the amino-terminal domain of CncB acts as a strong transcriptional activation domain. There are no good matches to CncB/Maf binding consensus sites in the known elements that are activated in response to Dfd and repressed in a CncB-dependent fashion. This suggests that some of the suppressive effect of CncB/Maf-S proteins on Dfd protein function might be exerted indirectly, while some may be exerted by direct binding to as yet uncharacterized Dfd response elements. We also show that ectopic CncB is sufficient to transform ventral epidermis in the trunk into repetitive arrays of ventral pharynx. We compare the functions of CncB to those of its vertebrate and invertebrate homologs, p45 NF-E2, Nrf and Skn-1 proteins, and suggest that the pharynx selector function of CncB is highly conserved on some branches of the evolutionary tree.


Blood ◽  
1996 ◽  
Vol 87 (11) ◽  
pp. 4607-4617 ◽  
Author(s):  
SP Hunger ◽  
S Li ◽  
MZ Fall ◽  
L Naumovski ◽  
ML Cleary

Genes encoding transcription factors are frequently altered by chromosomal translocations in acute lymphoblastic leukemia (ALL), suggesting that aberrant transcriptional regulation plays a prominent role in leukemogenesis. E2A-hepatic leukemia factor (HLF), a chimeric transcription factor created by the t(17;19), consists of the amino terminal portion of E2A proteins, including two experimentally defined transcriptional activation domains (TADs), fused to the HLF DNA binding and protein dimerization basic leucine zipper (bZIP) domain. To understand the mechanisms by which E2A-HLF induces leukemia and the crucial functions contributed by each constituent of the chimera, it is essential to define the normal transcriptional regulatory properties of HLF and related bZIP proteins. To address these questions, we cloned the human homologue of TEF/VBP, a bZIP protein closely related to HLF. Using a binding site selection assay, we found that TEF bound preferentially to the consensus sequence 5′-GTTACGTAAT-3′, which is identical to the previously determined HLF recognition site. TEF and HLF activated transcription of consensus site-containing reporter genes in several different cell types with similar potencies. Using GAL4 chimeric proteins, a TAD was mapped to a discrete approximate 40 amino acid region of TEF and HLF within which they share 72% amino acid identity and 85% similarity. The TEF/HLF activation domain (THAD) has a predicted helical secondary structure, but shares no sequence homology with previously reported TADs. The THAD contained most, if not all, of the transcriptional activation properties present in both TEF and HLF and its deletion completely abrogated transcriptional activity of TEF and HLF in both mammalian cells and yeast. Thus, TEF and HLF share indistinguishable DNA-binding and transcriptional regulatory properties, whose alteration in leukemia may be pathogenetically important.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 38-38
Author(s):  
Xing Li ◽  
Xiang-yuan Wu ◽  
Nan Jiang ◽  
Yan-Fang Xing ◽  
Jie Chen ◽  
...  

38 Background: A recent study indicated that Lectin-type oxidized LDL receptor-1 (LOX-1) was a distinct surface marker for human polymorphonuclears myeloid-derived suppressor cells (PMN-MDSC). The present study was aimed to investigate the existence LOX-1 PMN-MDSC in hepatocellular carcinoma (HCC) patients, the latent mechanism and their association with clinical parameters. Methods: 30 HCC patients and 30 health control were included. LOX-1+CD15+ PMN-MDSCs were investigated. Results: LOX-1+CD15+ PMN-MDSC were significantly elevated in both WB and PBMC of HCC patients compared with healthy control. LOX-1+CD15+ PMN-MDSC were more abundant in PBMC than WB. Addition of PMN-MDSCs resulted in significantly reduced proliferation and IFN-γ production of T cells with a dosage dependent manner. LOX-1-CD15+ PMNs present no suppressive function. The suppression on T cell proliferation and IFN-γ production was reversed by ROS inhibitor and Arginase inhibitor. ROS level of LOX-1+CD15+ PMN by DCFDA were higher in LOX-1+CD15+ PMN-MDSCs than LOX-1-CD15+ PMNs, as well as the mRNA levels of the NADPH oxidase NOX2. Meanwhile, the expression of arginase I and activity of arginase were also significantly raised in LOX-1+CD15+ PMN-MDSCs. LOX-1+CD15+ PMN-MDSCs displayed significantly higher expression of spliced X-box–binding protein 1 (sXBP1), ATF3 and CCAAT/enhancer binding protein (CHOP) were higher. For HCC patients, LOX-1+CD15+ PMN-MDSCs in WB were positively related to Cancer of the Liver Italian Program (CLIP) score. Conclusions: LOX-1+CD15+ PMN-MDSC were elevated in HCC patients and suppressed T cell proliferation through ROS/Arg I pathway with ER stress as a potential feature. LOX-1+CD15+ PMN-MDSC presented positive association with the prognosis of HCC patients.


Blood ◽  
2001 ◽  
Vol 97 (9) ◽  
pp. 2611-2617 ◽  
Author(s):  
Susan E. Lyons ◽  
Bixiong C. Shue ◽  
Andrew C. Oates ◽  
Leonard I. Zon ◽  
P. Paul Liu

Abstract The CCAAT/enhancer-binding protein (C/EBP) family consists of transcription factors essential for hematopoiesis. The defining feature of the C/EBPs is a highly conserved carboxy-terminal bZIP domain that is necessary and sufficient for dimerization and DNA binding, whereas their amino-terminal domains are unique. This study reports a novelc/ebp gene (c/ebp1) from zebrafish that encodes a protein homologous to mammalian C/EBPs within the bZIP domain, but with an amino terminus lacking homology to any C/EBP or to any known sequence. In zebrafish embryos, c/ebp1 expression was initially observed in cells within the yolk sac circulation valley at approximately the 16-to 18-somite stage, and at 24 hours postfertilization (hpf), also in circulating cells. Mostc/ebp1+cells also expressed a known early macrophage marker, leukocyte-specific plastin (l-plastin). Expression of both markers was lost in cloche, a mutant affecting hematopoiesis at the level of the hemangioblast. Expression of both markers was retained in m683 andspadetail, mutants affecting erythropoiesis, but not myelopoiesis. Further, c/ebp1 expression was lost in a mutant with defective myelopoiesis, but intact erythropoiesis. These data suggest that c/ebp1 is expressed exclusively in myeloid cells. In electrophoretic mobility shift assays, c/ebp1 was able to bind a C/EBP consensus DNA site. Further, a chimeric protein containing the amino-terminal domain of c/ebp1 fused to the DNA-binding domain of GAL4 induced a GAL4 reporter 4000-fold in NIH3T3 cells. These results suggest that c/ebp1 is a novel member of the C/EBP family that may function as a potent transcriptional activator in myeloid cells.


Sign in / Sign up

Export Citation Format

Share Document