scholarly journals Metastatic breast cancers have reduced immune cell recruitment but harbor increased macrophages relative to their matched primary tumors

2019 ◽  
Author(s):  
Li Zhu ◽  
Jessica L. Narloch ◽  
Sayali Onkar ◽  
Marion Joy ◽  
Catherine Luedke ◽  
...  

AbstractThe interplay between the immune system and tumor progression is well recognized. However, current human breast cancer immunophenotyping studies are mostly focused on primary tumors with metastatic breast cancer lesions remaining largely understudied. To address this gap, we examined exome-capture RNA sequencing data from 50 primary breast tumors (PBTs) and their patient-matched metastatic tumors (METs) in brain, ovary, bone and gastrointestinal tract. We used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TIL) and compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods both revealed that METs have a significantly lower abundance of total immune cells, including CD8+ T cells, regulatory T cells and dendritic cells. An exception was M2-like macrophages, which were significantly higher in METs across the organ sites examined. Multiplex immunohistochemistry results were consistent with data from the in-silico analysis and showed increased macrophages in METs. We confirmed the finding of a significant reduction in immune cells in brain (BRM) METs by pathologic assessment of TILs in a set of 49 patient-matched pairs of PBT/BRMs. These findings indicate that METs have an overall lower infiltration of immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq analysis suggests that the relative levels of M2-like macrophages are increased in METs, and their potential role in promoting breast cancer metastasis warrants further study.

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A55-A55
Author(s):  
Dannah Miller ◽  
Huong Nguyen ◽  
Kate Hieber ◽  
Charles Caldwell ◽  
Roberto Gianani

BackgroundImmune cells within the tumor microenvironment (TME) play a vital role in regulating tumor progression. Therefore, immunotherapies that stimulate anti-tumor responses are of great interest for the treatment of various cancers. PD-L1 expression on immune cells is positively correlated with increased patient survival. Our hypothesis is that non-small cell lung carcinoma (NSCLC) and colorectal cancer (CRC) patients with high immune infiltration and greater amounts of anti-tumor immune cells within the tumor compartment have an increased time of survival compared to cancers with immune excluded or immune desert environments.MethodsOne NSCLC and one CRC tumor microarray (TMA) containing primary tumors, metastases, and normal tissue were stained via multiplex immunofluorescence (mIF) for 6 different immune markers: CD3, CD8, CD56, CD68, CD163, and PD-L1. This multiplex panel was designed to evaluate the immune cell population as well as tumor and immune cell PD-L1 status to aid in research for immunotherapies, specifically anti-PD-L1 therapies. The stained TMAs were analyzed utilizing Flagship Biosciences’ proprietary image analysis platform. Machine learning algorithms stratified cells as belonging to the tumoral or stromal space based on their cellular features. Core level expression data was pulled and represented on a whole-cohort basis. All staining and image analysis outputs were reviewed by a board-certified, MD pathologist. Kaplan-meier curves were generated based on survival data in relation to the levels of immune cells present within the tumor cores as well as the percentage of immune cells infiltrating into the tumor.ResultsThere is a clear correlation between patient survival and the presence or absence of various types of immune cells, including helper T cells, cytotoxic T cells, M1 macrophages, M2, macrophages, NK cells, as well as PDL1 expression on tumor and immune cells. Specifically, the increased presence of anti-tumor immune cells as well as increased expression of PD-L1 on immune cells within the tumor compartment correlates with an increase in patient survival.ConclusionsData generated through Flagship Biosciences’ image analysis platform showed a strong relationship between immune cell presence and localization and NSCLC and CRC patient survival. Altering the immune cells within the tumor to an anti-tumor immune environment could increase patient survival times. Combining immune checkpoint inhibitors with current FDA approved therapies for NSCLC and CRC are of interest to further extend patient survival. Further, utilizing Flagship Biosciences’ image analysis software to understand cancer immune microenvironments should be further utilized to aid in diagnosis and treatment decisions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Anna-Maria Larsson ◽  
Anna Roxå ◽  
Karin Leandersson ◽  
Caroline Bergenfelz

Abstract Tumors affect the immune system, locally and systemically. The frequencies of specific circulating immune cell populations correlate with disease progression as well as prognosis of the patients. Although largely neglected, conventional antitumoral therapies often possess immunomodulatory properties and affect the levels of specific immune cell populations. Most information, however, derive from animal or in vitro studies. As this could impact prognosis as well as response to therapy, further studies of the effects of treatment on circulating immune cells in patients are warranted. In this pilot study, we evaluated a wide panel of circulating immune cells over time (up to six months) in ten patients with metastatic breast cancer receiving standard antitumoral regimens. Overall, endocrine therapy tends to enrich for natural killer (NK) and natural killer T (NKT) cells in the circulation, whereas both chemotherapy and endocrine therapy reduce the levels of circulating monocytic myeloid-derived suppressor cells (Mo-MDSCs). This indicates that the systemic immunosuppressive profile observed in patients tends to revert over the course of systemic therapy and holds promise for future combination treatment with standard antitumoral agents and immunotherapy.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15503-e15503
Author(s):  
Jun Lin ◽  
Ru Li ◽  
Yujie Huang

e15503 Background: Metastatic breast cancer is a pressing health concern worldwide. Various treatments have been developed but no significant long-term changes in overall survival are observed. Therefore, there is a demand to improve current therapies to treat this disease. Surgical resection of the primary tumors is essential in the treatment. However, accumulating evidence alludes to a role for volatile anesthetics which are used during the surgery in metastatic tumor development, but the mechanism remains largely unknown. We have shown anesthetics exert different effects on lung metastasis in mouse models of breast cancers. This study analyses the effect of general anesthetics in lung microenvironment associated with the increased metastases. Methods: Balb/c mice and NOD-SCID mice were orthotopically implanted with 4T1 cells and MDA-MB-231 cells respectively, in the mammary fat pad to generate primary tumors. Mice were subjected to the tested anesthetic during implantation and/or before and after surgery. Surgical dissection of primary tumor was performed under anesthesia with sevoflurane or an intravenous anesthetic propofol. Survival curve was constructed and analysed. Mice were euthanized to harvest tissues for histology and cell analysis. Results: As we previously reported, surgical dissection of primary tumor in mice under anesthesia with sevoflurane led to significantly more lung metastasis than with propofol in both syngeneic murine 4T1 and xenograft human MDA-MB-231 breast cancer models. Sevoflurane was associated with increased IL6(Li, Huang, & Lin, 2020). Here we show that anesthesia with sevoflurane resulted in changes of stroma composition in the lung, which was reversed by IL6 pathway interruption. Conclusions: Those results contribute to our understanding of effects of sevoflurane on cancer metastasis and suggest a potential therapeutic approach to overcome the risk of general anesthesia. Li, R., Huang, Y., & Lin, J. (2020). Distinct effects of general anesthetics on lung metastasis mediated by IL-6/JAK/STAT3 pathway in mouse models. Nat Commun, 11, 642.


2021 ◽  
Author(s):  
Mehdi Manoochehri ◽  
Thomas Hielscher ◽  
Nasim Borhani ◽  
Clarissa Gerhäuser ◽  
Olivia Fletcher ◽  
...  

Abstract Background: A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). Methods: Leukocyte subtype-specific un/methylated CpG sites were selected and methylation levels at these sites used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. Results: The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66-4.29), all Padj.<1e-04). A higher neutrophil ratio and lower ratios of NK cells, CD4+ T cells, CD8+ T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28-1.42), all Padj.<1e-04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P=0.019).Conclusion: This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.


Author(s):  
Kevin Kos ◽  
Karin E. de Visser

The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Wenli Fang ◽  
Ting Zhou ◽  
He Shi ◽  
Mengli Yao ◽  
Dian Zhang ◽  
...  

Abstract Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy.


2020 ◽  
Author(s):  
Qianyu Guo ◽  
Margarita Bartish ◽  
Christophe Goncalves ◽  
Fan Huang ◽  
Sai Sakktee Krisna ◽  
...  

AbstractPurposeBreast cancer diagnosed within 10 years following childbirth is defined as postpartum breast cancer (PPBC) and is highly metastatic. Interactions between immune cells and other stromal cells within the involuting mammary gland are fundamental in facilitating an aggressive tumor phenotype. The MNK1/2-eIF4E axis promotes the translation of pro-metastatic mRNAs in tumor cells, but its role in modulating the function of non-tumor cells in the PPBC microenvironment, and in particular its activity in human PPBC, has not been explored.Experimental designWe used a combination of in vivo PPBC models and in vitro assays to study the effects of phospho-eIF4E deficiency on the pro-tumor function of select cells of the TME. Furthermore, we employed Imaging Mass Cytometry on PPBC and non-PPBC patient samples, to chart the expression of the MNK1/2-eIF4E axis components in the TME.ResultsHere, we show that phospho-eIF4E deficient (eIF4ES209A) PPBC mice are protected against lung metastasis and reveal differences in the lung immune microenvironment of the WT and eIF4ES209A mice. Moreover, we show that the expression of fibroblast-derived IL-33, an alarmin known to induce invasion, was repressed upon MNK1/2-eIF4E axis inhibition. Imaging Mass Cytometry results indicated that human PPBC contain phospho-eIF4E high-expressing tumor cells and CD8+ T cells displaying an activated dysfunctional phenotype. Finally, we block lung metastasis in PPBC mice, using combined MNK1/2 inhibition and anti-PD-1 therapy.ConclusionsThese findings implicate the involvement of the MNK1/2-eIF4E axis during PPBC metastasis and suggest a promising immunomodulatory route to enhance the efficacy of immunotherapy by blocking phospho-eIF4E.Translational relevancePostpartum breast cancer (PPBC) is highly aggressive. It is hypothesized that involution-induced changes in the postpartum breast microenvironment, which include an influx of inflammatory immune cells and activation of resident fibroblasts, facilitate the invasiveness of an existing neoplasm. We used imaging mass cytometry to do an in-depth profiling of the MNK1-eIF4E axis in the TME of a unique cohort of PPBC and non-PPBC patients. We observed patterns of phospho-eIF4E in non-tumor cells that were specific to the TME of PPBC. We also noted that the CD8+ T cells present in PPBC express an activated dysfunctional phenotype characterized by the co-expression of HLA-DR and PD-1. This study represents a first look at the expression of the MNK1-eIF4E axis in the stromal cells of metastatic breast cancer and has therapeutic implications as we show, in an animal model of PPBC, that MNK1/2 inhibition can be used to sensitize tumors to anti-PD1 immunotherapy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mehdi Manoochehri ◽  
Thomas Hielscher ◽  
Nasim Borhani ◽  
Clarissa Gerhäuser ◽  
Olivia Fletcher ◽  
...  

Abstract Background A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). Methods Leukocyte subtype-specific unmethylated/methylated CpG sites were selected, and methylation levels at these sites were used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. Results The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66–4.29), all Padj. < 1e−04). A higher neutrophil ratio and lower ratios of NK cells, CD4 + T cells, CD8 + T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28–1.42), all Padj. < 1e−04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P = 0.019). Conclusion This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.


2019 ◽  
Author(s):  
Juliana C. Wortman ◽  
Ting-Fang He ◽  
Shawn Solomon ◽  
Robert Z. Zhang ◽  
Anthony Rosario ◽  
...  

AbstractWhile the density of tumor-infiltrating lymphocytes (TILs) is now well known to correlate with clinical outcome, the clinical significance of spatial distribution of TILs is not well characterized. We have developed novel statistical techniques (including fractal dimension differences, a hotspot analysis, a box counting method that we call ‘occupancy’ and a way to normalize cell density that we call ‘thinning’) to analyze the spatial distribution (at different length scales) of various types of TILs in triple negative breast tumors. Consistent with prior reports, the density of CD20+ B cells within tumors is not correlated with clinical outcome. However, we found that their spatial distribution differs significantly between good clinical outcome (no recurrence within at least 5 years of diagnosis) and poor clinical outcome (recurrence with 3 years of diagnosis). Furthermore, CD20+ B cells are more spatially dispersed in good outcome tumors and are more likely to infiltrate into cancer cell islands. Lastly, we found significant correlation between the spatial distributions of CD20+ B cells and CD8+ (cytotoxic) T cells (as well as CD3+ T cells), regardless of outcome. These results highlight the significance of the spatial distribution of TILs, especially B cells, within tumors.Significance StatementImmune cells can fight cancer. For example, a patient has a good prognosis when a high density of killer T cells, a type of immune cell that can kill cancer cells, infiltrates into a tumor. However, there is no clear association between prognosis and the density of B cells, another type of immune cell, in a tumor. We developed several statistical techniques to go beyond cell density and look at the spatial distribution, i.e., the pattern or arrangement of immune cells, in tumors that have been removed from patients with triple negative breast cancer. We find that B cells and killer T cells tend to be more spread out in the tumors of patients whose cancer did not recur.


2021 ◽  
Author(s):  
Mehdi Manoochehri ◽  
Thomas Hielscher ◽  
Nasim Borhani ◽  
Clarissa Gerhäuser ◽  
Olivia Fletcher ◽  
...  

Abstract Background: A shift in the proportions of blood immune cells is a hallmark of cancer development. Here, we investigated whether methylation-derived immune cell type ratios and methylation-derived neutrophil-to-lymphocyte ratios (mdNLRs) are associated with triple-negative breast cancer (TNBC). Methods: Leukocyte subtype-specific un/methylated CpG sites were selected and methylation levels at these sites used as proxies for immune cell type proportions and mdNLR estimation in 231 TNBC cases and 231 age-matched controls. Data were validated using the Houseman deconvolution method. Additionally, the natural killer (NK) cell ratio was measured in a prospective sample set of 146 TNBC cases and 146 age-matched controls. Results: The mdNLRs were higher in TNBC cases compared with controls and associated with TNBC (odds ratio (OR) range (2.66-4.29), all Padj.<1e-04). A higher neutrophil ratio and lower ratios of NK cells, CD4+ T cells, CD8+ T cells, monocytes, and B cells were associated with TNBC. The strongest association was observed with decreased NK cell ratio (OR range (1.28-1.42), all Padj.<1e-04). The NK cell ratio was also significantly lower in pre-diagnostic samples of TNBC cases compared with controls (P=0.019).Conclusion: This immunomethylomic study shows that a shift in the ratios/proportions of leukocyte subtypes is associated with TNBC, with decreased NK cell showing the strongest association. These findings improve our knowledge of the role of the immune system in TNBC and point to the possibility of using NK cell level as a non-invasive molecular marker for TNBC risk assessment, early detection, and prevention.


Sign in / Sign up

Export Citation Format

Share Document