scholarly journals Progranulin induces immune escape in breast cancer via up-regulating PD-L1 expression on tumor-associated macrophages (TAMs) and promoting CD8+ T cell exclusion

Author(s):  
Wenli Fang ◽  
Ting Zhou ◽  
He Shi ◽  
Mengli Yao ◽  
Dian Zhang ◽  
...  

Abstract Background Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism. Methods The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative polymerase chain reaction (PCR) and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in Wild-type (WT) and PGRN−/− breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry. Results After being treated with PGRN, the expressions of M2 markers and programmed death ligand 1 (PD-L1) on macrophages increased significantly. Signal transducer and activator of transcription 3 (STAT3) signaling pathway inhibitor Stattic significantly inhibited the expression of PD-L1 and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN−/− breast cancer tissue increased, and their infiltration into tumor parenchyma was also enhanced. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+ T cells but also reduced the proportion of proliferating CD8+ T cells. The addition of programmed death receptor 1 (PD-1) and PD-L1 neutralizing antibodies effectively reversed this effect and restored the immune function of CD8+ T cells. Conclusion These results demonstrate that PGRN promotes M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy.

2020 ◽  
Author(s):  
Wenli Fang ◽  
Ting Zhou ◽  
He Shi ◽  
Mengli Yao ◽  
Dian Zhang ◽  
...  

Abstract Background: Progranulin (PGRN), as a multifunctional growth factor, is overexpressed in multiple tumors, but the role of PGRN on tumor immunity is still unclear. Here, we studied the effect of PGRN on breast cancer tumor immunity and its possible molecular mechanism.Methods: The changes of macrophage phenotypes after PGRN treatment were detected by western blot, quantitative PCR and flow cytometry. Western blot was used to study the signal molecular mechanism of PGRN regulating this process. The number and localization of immune cells in WT and PGRN-/- breast cancer tissues were analyzed by immunohistochemical staining and immunofluorescence techniques. The activation and proliferation of CD8+ T cells were measured by flow cytometry.Results: After being treated with PGRN, the expressions of M2 markers and PD-L1 on macrophages increased. STAT3 signaling pathway inhibitor Stattic could significantly inhibit PD-L1 expression and M2 related markers induced by PGRN. In WT group, CD8 were co-localized with macrophages and PD-L1, but not tumor cells. The number of immune cells in PGRN-/- breast cancer tissue increased, and the infiltration into tumor parenchyma also increased. Moreover, in the co-culture system, WT peritoneal macrophages not only reduced the ratio of activated CD8+T cells but also reduced the proportion of proliferating CD8+T cells. The addition of PD-1 and PD-L1 neutralizing antibodies could effectively reverse this effect and restore the immune function of CD8+T cells.Conclusion: The results show that PGRN can promote M2 polarization and PD-L1 expression by activating the STAT3 signaling pathway. Furthermore, through PD-1/PD-L1 interaction, PGRN can promote the breast tumor immune escape. Our research may provide new ideas and targets for clinical breast cancer immunotherapy.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 128 ◽  
Author(s):  
Taylor T. Chrisikos ◽  
Yifan Zhou ◽  
Haiyan S. Li ◽  
Rachel L. Babcock ◽  
Xianxiu Wan ◽  
...  

Conventional dendritic cells (cDCs) are a critical immune population, composed of multiple subsets, and responsible for controlling adaptive immunity and tolerance. Although migratory type 1 cDCs (CD103+ cDC1s in mice) are necessary to mount CD8+ T cell-mediated anti-tumor immunity, whether and how tumors modulate CD103+ cDC1 function remain understudied. Signal Transducer and Activator of Transcription 3 (STAT3) mediates the intracellular signaling of tumor-associated immunosuppressive cytokines, such as interleukin (IL)-10; thus, we hypothesized that STAT3 restrained anti-tumor immune responses elicited by CD103+ cDC1s. Herein, we show that in vitro-derived STAT3-deficient (Stat3∆/∆) CD103+ cDC1s are refractory to the inhibitory effects of IL-10 on Toll-like receptor 3 (TLR3) agonist-induced maturation responses. In a tumor vaccination approach, we found Stat3∆/∆ CD103+ cDC1s restrained mammary gland tumor growth and increased mouse survival more effectively than STAT3-sufficient CD103+ cDC1s. In addition, vaccination with Stat3∆/∆ CD103+ cDC1s elicited increased amounts of tumor antigen-specific CD8+ T cells and IFN-γ+ CD4+ T cells in tumors and tumor-draining lymph nodes versus phosphate-buffered saline (PBS)-treated animals. Furthermore, IL-10 receptor-deficient CD103+ cDC1s controlled tumor growth to a similar degree as Stat3∆/∆ CD103+ cDC1s. Taken together, our data reveal an inhibitory role for STAT3 in CD103+ cDC1 maturation and regulation of anti-tumor immunity. Our results also suggest IL-10 is a key factor eliciting immunosuppressive STAT3 signaling in CD103+ cDC1s in breast cancer. Thus, inhibition of STAT3 in cDC1s may provide an important strategy to improve their efficacy in tumor vaccination approaches and cDC1-mediated control of anti-tumor immunity.


Author(s):  
Kevin Kos ◽  
Karin E. de Visser

The microenvironment of breast cancer hosts a dynamic cross talk between diverse players of the immune system. While cytotoxic immune cells are equipped to control tumor growth and metastasis, tumor-corrupted immunosuppressive immune cells strive to impair effective immunity and promote tumor progression. Of these, regulatory T cells (Tregs), the gatekeepers of immune homeostasis, emerge as multifaceted players involved in breast cancer. Intriguingly, clinical observations suggest that blood and intratumoral Tregs can have strong prognostic value, dictated by breast cancer subtype. Accordingly, emerging preclinical evidence shows that Tregs occupy a central role in breast cancer initiation and progression and provide critical support to metastasis formation. Here, Tregs are not only important for immune escape but also promote tumor progression independent of their immune regulatory capacity. Combining insights into Treg biology with advances made across the rapidly growing field of immuno-oncology is expected to set the stage for the design of more effective immunotherapy strategies. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Author(s):  
Li Zhu ◽  
Jessica L. Narloch ◽  
Sayali Onkar ◽  
Marion Joy ◽  
Catherine Luedke ◽  
...  

AbstractThe interplay between the immune system and tumor progression is well recognized. However, current human breast cancer immunophenotyping studies are mostly focused on primary tumors with metastatic breast cancer lesions remaining largely understudied. To address this gap, we examined exome-capture RNA sequencing data from 50 primary breast tumors (PBTs) and their patient-matched metastatic tumors (METs) in brain, ovary, bone and gastrointestinal tract. We used gene expression signatures as surrogates for tumor infiltrating lymphocytes (TIL) and compared TIL patterns in PBTs and METs. Enrichment analysis and deconvolution methods both revealed that METs have a significantly lower abundance of total immune cells, including CD8+ T cells, regulatory T cells and dendritic cells. An exception was M2-like macrophages, which were significantly higher in METs across the organ sites examined. Multiplex immunohistochemistry results were consistent with data from the in-silico analysis and showed increased macrophages in METs. We confirmed the finding of a significant reduction in immune cells in brain (BRM) METs by pathologic assessment of TILs in a set of 49 patient-matched pairs of PBT/BRMs. These findings indicate that METs have an overall lower infiltration of immune cells relative to their matched PBTs, possibly due to immune escape. RNAseq analysis suggests that the relative levels of M2-like macrophages are increased in METs, and their potential role in promoting breast cancer metastasis warrants further study.


Author(s):  
Shasha Liu ◽  
Chaoqi Zhang ◽  
Boqiao Wang ◽  
Huanyu Zhang ◽  
Guohui Qin ◽  
...  

AbstractGlioma stem cells (GSCs) contribute to the malignant growth of glioma, but little is known about the interaction between GSCs and tumor microenvironment. Here, we found that intense infiltration of regulatory T cells (Tregs) facilitated the qualities of GSCs through TGF-β secretion that helped coordinately tumor growth. Mechanistic investigations indicated that TGF-β acted on cancer cells to induce the core cancer stem cell-related genes CD133, SOX2, NESTIN, MUSASHI1 and ALDH1A expression and spheres formation via NF-κB–IL6–STAT3 signaling pathway, resulting in the increased cancer stemness and tumorigenic potential. Furthermore, Tregs promoted glioma tumor growth, and this effect could be abrogated with blockade of IL6 receptor by tocilizumab which also demonstrated certain level of therapeutic efficacy in xenograft model. Additionally, expression levels of CD133, IL6 and TGF-β were found to serve as prognosis markers of glioma patients. Collectively, our findings reveal a new immune-associated mechanism underlying Tregs-induced GSCs. Moreover, efforts to target this network may be an effective strategy for treating glioma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wan Fatin Amira Wan Mohd Zawawi ◽  
M. H. Hibma ◽  
M. I. Salim ◽  
K. Jemon

AbstractBreast cancer is the most common cancer that causes death in women. Conventional therapies, including surgery and chemotherapy, have different therapeutic effects and are commonly associated with risks and side effects. Near infrared radiation is a technique with few side effects that is used for local hyperthermia, typically as an adjuvant to other cancer therapies. The understanding of the use of near NIR as a monotherapy, and its effects on the immune cells activation and infiltration, are limited. In this study, we investigate the effects of HT treatment using NIR on tumor regression and on the immune cells and molecules in breast tumors. Results from this study demonstrated that local HT by NIR at 43 °C reduced tumor progression and significantly increased the median survival of tumor-bearing mice. Immunohistochemical analysis revealed a significant reduction in cells proliferation in treated tumor, which was accompanied by an abundance of heat shock protein 70 (Hsp70). Increased numbers of activated dendritic cells were observed in the draining lymph nodes of the mice, along with infiltration of T cells, NK cells and B cells into the tumor. In contrast, tumor-infiltrated regulatory T cells were largely diminished from the tumor. In addition, higher IFN-γ and IL-2 secretion was observed in tumor of treated mice. Overall, results from this present study extends the understanding of using local HT by NIR to stimulate a favourable immune response against breast cancer.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12573-e12573
Author(s):  
Yoshihisa Tokumaru ◽  
Masanori Oshi ◽  
Vijayashree Murthy ◽  
Eriko Katsuta ◽  
Nobuhisa Matsuhashi ◽  
...  

e12573 Background: In breast cancer patients, it is well known that the elevation of neutrophil lymphocyte ratio (NLR) in the blood are reported to associate with poor prognosis based on the notion that neutrophils represent pro-cancer, and lymphocytes represent anti-cancer immune cells. Tumor immune microenvironment has been demonstrated to play critical roles in the outcome of breast cancer patients. However, there is scarce evidence on the clinical relevance of intratumoral NLR in breast cancer patients. In the current study, we hypothesized that intratumoral NLR high tumors are associated with worse survival particularly in TNBC that is known to have high immune cell infiltration. Methods: A total of 1904 breast cancer patients’ data from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium) and analyzed. NLR was calculated by the gene expressions of CD66b (CEACAM8) and CD8 (CD8A). NLR high and low were divided by the median. Overall Survival (OS) and Disease-Free Survival were calculated utilizing Kaplan Meier method between intratumoral NLR high and low groups. xCell algorithm was used to analyze the infiltrated immune cells within the tumor immune microenvironment as we have previously published. Results: Intratumoral NLR high group was associated with worse OS in whole, ER-positive/HER2-negative, and triple negative (TN) subtypes, in agreement with the previous studies. TN subtype alone demonstrated worse DFS of NLR high group. Surprisingly, gene set enrichment analysis (GSEA) demonstrated no gene set enrichment to NLR high group, which implicates that there is no distinctive mechanism that associate with worse survival. Whereas, immune response-related gene sets significantly enriched to NLR low group in TN subtype. This enrichment was consistent in ER-positive/HER2-negative. Compared with ER-positive/HER2-negative subtype, anti-cancer immune cells such as CD4+ T cells, CD8+ T cells, M1 macrophage, and helper T helper type 1 cells were significantly infiltrated in TN patients (p < 0.001 for all genes), where M2 macrophages and neutrophils were less and regulatory T cells and T helper type 2 cells were more infiltrated in TN subtype. Furthermore, intratumoral NLR was significantly lower in TN compared with ER-positive/HER2-negative subtype (p < 0.001). These results suggest that intratumoral NLR low group is associated with better survival due to favorable tumor immune microenvironment in TN subtype rather than NLR high group has worse survival. Conclusions: Intratumoral NLR low tumor demonstrated more favorable OS and more favorable DFS in TN patients. Intratumoral NLR low breast cancer was associated with enhanced immune response and higher infiltration of anti-cancer immune cells were observed in TN subtype compared to ER-positive/HER2-negative which may contribute to the favorable outcome of in TN breast cancer.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Dan Chen ◽  
Xiaoting Li ◽  
Hui Li ◽  
Kai Wang ◽  
Xianghua Tian

Background. As the most common hepatic malignancy, hepatocellular carcinoma (HCC) has a high incidence; therefore, in this paper, the immune-related genes were sought as biomarkers in liver cancer. Methods. In this study, a differential expression analysis of lncRNA and mRNA in The Cancer Genome Atlas (TCGA) dataset between the HCC group and the normal control group was performed. Enrichment analysis was used to screen immune-related differentially expressed genes. Cox regression analysis and survival analysis were used to determine prognostic genes of HCC, whose expression was detected by molecular experiments. Finally, important immune cells were identified by immune cell infiltration and detected by flow cytometry. Results. Compared with the normal group, 1613 differentially expressed mRNAs (DEmRs) and 1237 differentially expressed lncRNAs (DElncRs) were found in HCC. Among them, 143 immune-related DEmRs and 39 immune-related DElncRs were screened out. These genes were mainly related to MAPK cascade, PI3K-AKT signaling pathway, and TGF-beta. Through Cox regression analysis and survival analysis, MMP9, SPP1, HAGLR, LINC02202, and RP11-598F7.3 were finally determined as the potential diagnostic biomarkers for HCC. The gene expression was verified by RT-qPCR and western blot. In addition, CD4 + memory resting T cells and CD8 + T cells were identified as protective factors for overall survival of HCC, and they were found highly expressed in HCC through flow cytometry. Conclusion. The study explored the dysregulation mechanism and potential biomarkers of immune-related genes and further identified the influence of immune cells on the prognosis of HCC, providing a theoretical basis for the prognosis prediction and immunotherapy in HCC patients.


Sign in / Sign up

Export Citation Format

Share Document