scholarly journals Streamlined low-input transcriptomics through EASY-RNAseq

2019 ◽  
Author(s):  
Yiwen Zhou ◽  
Hao Xu ◽  
Haiyang Wu ◽  
Haili Yu ◽  
Peng Zhou ◽  
...  

ABSTRACTHigh-throughput sequencing for transcriptome profiling is an increasingly accessible and important tool for biological research. However, accurate profiling of small cell populations remains challenging due to issues with gene detection sensitivity and experimental complexity. Here we describe a streamlined RNAseq protocol (EASY RNAseq) for sensitive transcriptome assessment starting from low amount of input materials. EASY RNAseq is technically robust enough for sequencing small pools of homogenous and heterogeneous cells, recovering higher numbers of genes and with a more even expression distribution pattern than other commonly used methods. Application of EASY RNAseq to single human embryos at the 8-cell stage was able to achieve detection of 70% protein-coding genes. This workflow may thus serve as a useful tool for sensitive interrogation of rare cell populations.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yiheng Wang ◽  
Sheng Wang ◽  
Yanlei Liu ◽  
Qingjun Yuan ◽  
Jiahui Sun ◽  
...  

Abstract Background Atractylodes DC is the basic original plant of the widely used herbal medicines “Baizhu” and “Cangzhu” and an endemic genus in East Asia. Species within the genus have minor morphological differences, and the universal DNA barcodes cannot clearly distinguish the systemic relationship or identify the species of the genus. In order to solve these question, we sequenced the chloroplast genomes of all species of Atractylodes using high-throughput sequencing. Results The results indicate that the chloroplast genome of Atractylodes has a typical quadripartite structure and ranges from 152,294 bp (A. carlinoides) to 153,261 bp (A. macrocephala) in size. The genome of all species contains 113 genes, including 79 protein-coding genes, 30 transfer RNA genes and four ribosomal RNA genes. Four hotspots, rpl22-rps19-rpl2, psbM-trnD, trnR-trnT(GGU), and trnT(UGU)-trnL, and a total of 42–47 simple sequence repeats (SSR) were identified as the most promising potentially variable makers for species delimitation and population genetic studies. Phylogenetic analyses of the whole chloroplast genomes indicate that Atractylodes is a clade within the tribe Cynareae; Atractylodes species form a monophyly that clearly reflects the relationship within the genus. Conclusions Our study included investigations of the sequences and structural genomic variations, phylogenetics and mutation dynamics of Atractylodes chloroplast genomes and will facilitate future studies in population genetics, taxonomy and species identification.


2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


Development ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 147-156
Author(s):  
R. F. Searle ◽  
E. J. Jenkinson

The binding pattern of a rabbit antiserum raised against mouse ectoplacental-cone trophoblast on component cell populations in the pre-implantation and early post-implantation mouse embryo has been examined at the electron-microscope level using an immunoperoxidase-labelling technique. Binding was not detectable on the 1-cell stage, appeared at low levels at the 8-cell stage ana was heavy on the trophectoderm and its trophoblast giant cell and extra-embryonic ectoderm descendants in the post-implantation embryo. In contrast, immunosurgically isolated 3½-day inner cell masses (ICM) showed only slight labelling, whilst ICM derivatives in the 7½-day embryo were unlabelled. The results indicate that the antiserum may be identifying a trophoblast-specific surface determinant(s), which appears with the differentiation of the trophectoderm and is maintained on some of the cell populations derived from this tissue at least until the early postimplantation stages.


2021 ◽  
Vol 11 (8) ◽  
pp. 1306-1312
Author(s):  
Li Song ◽  
Ningchao Du ◽  
Haitao Luo ◽  
Furong Li

This study aimed to identify the association of protein coding and long non coding RNA genes with immunotherapy response in melanoma. Based on RNA sequencing data of melanoma specimens, the expression levels of protein coding and long non coding RNA genes were calculated using the Kallisto RNA-seq quantification method, and differently expressed genes were detected using the DESeq2 method. Cox proportional hazards regression was used to evaluate the effects of gene expression on survival. According to the clinical data of 14 patients with drug response and 11 patients without drug response, 18 protein coding genes and 14 long non coding RNAs showed differential expressions (multiple of difference > 2 and P < 0.01 after correction), among which the coding genes of differential expression were significantly enriched through the process of cell adhesion (P < 0.01). The results of survival analysis showed that 18 coding genes and 14 long non coding RNA genes had significant effects on patient survival (P < 0.01). In this study, magnetic nanoparticles can be used to extract genomic DNA and total RNA due to their paramagnetism and biocompatibility, then transcriptome high-throughput sequencing was performed. The method has the advantages of removing dangerous reagents such as phenol and chloroform, replacing inorganic coating such as silica with organic oil, and shortening reaction time. Protein coding and long non coding RNA genes as well as magnetic nanoparticles may serve as potential cancer immune biomarker targets for developing future oncological treatments.


2006 ◽  
Vol 80 (22) ◽  
pp. 11409-11415 ◽  
Author(s):  
Albana Gattelli ◽  
María N. Zimberlin ◽  
Roberto P. Meiss ◽  
Lucio H. Castilla ◽  
Edith C. Kordon

ABSTRACT Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.


2020 ◽  
Vol 11 ◽  
Author(s):  
Huimin Liu ◽  
Zhibin Shi ◽  
Chunguo Liu ◽  
Pengfei Wang ◽  
Ming Wang ◽  
...  

Pseudorabies viruses (PRVs) pose a great threat to the pig industry of many countries around the world. Human infections with PRV have also been reported occasionally in China. Therefore, understanding the epidemiology and evolution of PRVs is of great importance for disease control in the pig populations and humans as well. In this study, we isolated a PRV designated HLJ-2013 from PRV-positive samples that had been collected in Heilongjiang, China, in 2013. The full genome sequence of the virus was determined to be ∼143 kbp in length using high-throughput sequencing. The genomic sequence identities between this isolate and 21 other previous PRV isolates ranged from 92.4% (with Bartha) to 97.3% (with SC). Phylogenetic analysis based on the full-length genome sequences revealed that PRV HLJ-2013 clustered together with all the Chinese strains in one group belonging to Genotype II, but this virus occurred phylogenetically earlier than all the other Chinese PRV strains. Phylogenetic trees based on both protein-coding genes and non-coding regions revealed that HLJ-2013 probably obtained its genome sequences from three origins: a yet unknown parent virus, the European viruses, and the same ancestor of all Chinese PRVs. Recombination analysis showed that HLJ-2013-like virus possibly donated the main framework of the genome of the Chinese PRVs. HLJ-2013 exhibited cytopathic and growth characteristics similar to that of the Chinese PRV strains SC and HeN1, but its pathogenicity in mice was higher than that of SC and lower than that of HeN1. The identification of HLJ-2013 takes us one step closer to understanding the origin of PRVs in China and provides new knowledge about the evolution of PRVs worldwide.


2021 ◽  
Author(s):  
Teresa Rayon ◽  
Rory J. Maizels ◽  
Christopher Barrington ◽  
James Briscoe

AbstractThe spinal cord receives input from peripheral sensory neurons and controls motor output by regulating muscle innervating motor neurons. These functions are carried out by neural circuits comprising molecularly and physiologically distinct neuronal subtypes that are generated in a characteristic spatial-temporal arrangement from progenitors in the embryonic neural tube. The systematic mapping of gene expression in mouse embryos has provided insight into the diversity and complexity of cells in the neural tube. For human embryos, however, less information has been available. To address this, we used single cell mRNA sequencing to profile cervical and thoracic regions in four human embryos of Carnegie Stages (CS) CS12, CS14, CS17 and CS19 from Gestational Weeks (W) 4-7. In total we recovered the transcriptomes of 71,219 cells. Analysis of progenitor and neuronal populations from the neural tube, as well as cells of the peripheral nervous system, in dorsal root ganglia adjacent to the neural tube, identified dozens of distinct cell types and facilitated the reconstruction of the differentiation pathways of specific neuronal subtypes. Comparison with existing mouse datasets revealed the overall similarity of mouse and human neural tube development while highlighting specific features that differed between species. These data provide a catalogue of gene expression and cell type identity in the developing neural tube that will support future studies of sensory and motor control systems and can be explored at https://shiny.crick.ac.uk/scviewer/neuraltube/.


Sign in / Sign up

Export Citation Format

Share Document