scholarly journals Germline genetic determination of cancer progression and survival

2019 ◽  
Author(s):  
Benjamin N. Ostendorf ◽  
Kimia N. Tafreshian ◽  
Nneoma Adaku ◽  
Jana Bilanovic ◽  
Bernardo Tavora ◽  
...  

We report the surprising finding that common germline polymorphisms of APOE, present in approximately 39% of Caucasians, predict survival outcomes in human melanoma. Analysis of The Cancer Genome Atlas revealed that carriers of the APOE2 variant experienced shorter survival relative to APOE3 homozygotes, while APOE4 variant carriers exhibited increased survival. Consistent with this, melanoma growth in human APOE knock-in mice followed the order of APOE2 > APOE3 > APOE4, revealing causal regulation of progression by APOE variants. Mechanistically, recombinant ApoE protein variants differentially suppressed melanoma cell invasion and endothelial recruitment phenotypes. Moreover, tumors in APOE4 mice exhibited greater immune cell infiltration and activation relative to tumors of APOE2 mice. These findings support the notion that human germline genetic makeup can impact the trajectory of a future malignancy.

Oncogene ◽  
2021 ◽  
Author(s):  
Yong Wu ◽  
Qinhao Guo ◽  
Xingzhu Ju ◽  
Zhixiang Hu ◽  
Lingfang Xia ◽  
...  

AbstractNumerous studies suggest an important role for copy number alterations (CNAs) in cancer progression. However, CNAs of long intergenic noncoding RNAs (lincRNAs) in ovarian cancer (OC) and their potential functions have not been fully investigated. Here, based on analysis of The Cancer Genome Atlas (TCGA) database, we identified in this study an oncogenic lincRNA termed LINC00662 that exhibited a significant correlation between its CNA and its increased expression. LINC00662 overexpression is highly associated with malignant features in OC patients and is a prognostic indicator. LINC00662 significantly promotes OC cell proliferation and metastasis in vitro and in vivo. Mechanistically, LINC00662 is stabilized by heterogeneous nuclear ribonucleoprotein H1 (HNRNPH1). Moreover, LINC00662 exerts oncogenic effects by interacting with glucose-regulated protein 78 (GRP78) and preventing its ubiquitination in OC cells, leading to activation of the oncogenic p38 MAPK signaling pathway. Taken together, our results define an oncogenic role for LINC00662 in OC progression mediated via GRP78/p38 signaling, with potential implications regarding therapeutic targets for OC.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2046 ◽  
Author(s):  
Valerio Izzi ◽  
Martin N. Davis ◽  
Alexandra Naba

The extracellular matrix (ECM) is a master regulator of all cellular functions and a major component of the tumor microenvironment. We previously defined the “matrisome” as the ensemble of genes encoding ECM proteins and proteins modulating ECM structure or function. While compositional and biomechanical changes in the ECM regulate cancer progression, no study has investigated the genomic alterations of matrisome genes in cancers and their consequences. Here, mining The Cancer Genome Atlas (TCGA) data, we found that copy number alterations and mutations are frequent in matrisome genes, even more so than in the rest of the genome. We also found that these alterations are predicted to significantly impact gene expression and protein function. Moreover, we identified matrisome genes whose mutational burden is an independent predictor of survival. We propose that studying genomic alterations of matrisome genes will further our understanding of the roles of this compartment in cancer progression and will lead to the development of innovative therapeutic strategies targeting the ECM.


2014 ◽  
Author(s):  
Daniele Ramazzotti ◽  
Giulio Caravagna ◽  
Loes Olde Loohuis ◽  
Alex Graudenzi ◽  
Ilya Korsunsky ◽  
...  

We devise a novel inference algorithm to effectively solve the cancer progression model reconstruction problem. Our empirical analysis of the accuracy and convergence rate of our algorithm, CAncer PRogression Inference (CAPRI), shows that it outperforms the state-of-the-art algorithms addressing similar problems. Motivation: Several cancer-related genomic data have become available (e.g., The Cancer Genome Atlas, TCGA) typically involving hundreds of patients. At present, most of these data are aggregated in a cross-sectional fashion providing all measurements at the time of diagnosis. Our goal is to infer cancer ?progression? models from such data. These models are represented as directed acyclic graphs (DAGs) of collections of ?selectivity? relations, where a mutation in a gene A ?selects? for a later mutation in a gene B. Gaining insight into the structure of such progressions has the potential to improve both the stratification of patients and personalized therapy choices. Results: The CAPRI algorithm relies on a scoring method based on a probabilistic theory developed by Suppes, coupled with bootstrap and maximum likelihood inference. The resulting algorithm is efficient, achieves high accuracy, and has good complexity, also, in terms of convergence properties. CAPRI performs especially well in the presence of noise in the data, and with limited sample sizes. Moreover CAPRI, in contrast to other approaches, robustly reconstructs different types of confluent trajectories despite irregularities in the data. We also report on an ongoing investigation using CAPRI to study atypical Chronic Myeloid Leukemia, in which we uncovered non trivial selectivity relations and exclusivity patterns among key genomic events.


2019 ◽  
Author(s):  
Shaolong Cao ◽  
Zeya Wang ◽  
Fan Gao ◽  
Jingxiao Chen ◽  
Feng Zhang ◽  
...  

AbstractThe deconvolution of transcriptomic data from heterogeneous tissues in cancer studies remains challenging. Available software faces difficulties for accurately estimating both component-specific proportions and expression profiles for individual samples. To address these challenges, we present a new R-implementation pipeline for the more accurate and efficient transcriptome deconvolution of high dimensional data from mixtures of more than two components. The pipeline utilizes the computationally efficient DeMixT R-package with OpenMP and additional cancer-specific biological information to perform three-component deconvolution without requiring data from the immune profiles. It enables a wide application of DeMixT to gene expression datasets available from cancer consortium such as the Cancer Genome Atlas (TCGA) projects, where, other than the mixed tumor samples, a handful of normal samples are profiled in multiple cancer types. We have applied this pipeline to two TCGA datasets in colorectal adenocarcinoma (COAD) and prostate adenocarcinoma (PRAD). In COAD, we found varying distributions of immune proportions across the Consensus Molecular Subtypes, from the highest to the lowest being CMS1, CMS3, CMS4 and CMS2. In PRAD, we found the immune proportions are associated with progression-free survival (p<0.01) and negatively correlated with Gleason scores (p<0.001). Our DeMixT-centered analysis protocol opens up new opportunities to investigate the tumor-stroma-immune microenvironment, by providing both proportions and component-specific expressions, and thus better define the underlying biology of cancer progression.Availability and implementation: An R package, scripts and data are available: https://github.com/wwylab/DeMixTallmaterials.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ming Gao ◽  
Xinzhuang Wang ◽  
Dayong Han ◽  
Enzhou Lu ◽  
Jian Zhang ◽  
...  

Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.


2021 ◽  
Vol 18 (6) ◽  
pp. 7743-7758
Author(s):  
Linlin Tan ◽  
◽  
Dingzhuo Cheng ◽  
Jianbo Wen ◽  
Kefeng Huang ◽  
...  

<abstract> <sec><title>Background</title><p>Hypoxia is a crucial factor in the development of esophageal cancer. The relationship between hypoxia and immune status in the esophageal cancer microenvironment is becoming increasingly important in clinical practice. This study aims to clarify and investigate the possible connection between immunotherapy and hypoxia in esophageal cancer.</p> </sec> <sec><title>Methods</title><p>The Cancer Genome Atlas databases are used to find two types of esophageal cancer cases. Cox regressions analyses are used to screen genes for hypoxia-related traits. After that, the genetic signature is validated by survival analysis and the construction of ROC curves. GSEA is used to compare differences in enrichment in the two groups and is followed by the CIBERSORT tool to investigate a potentially relevant correlation between immune cells and gene signatures.</p> </sec> <sec><title>Results</title><p>We found that the esophageal adenocarcinoma hypoxia model contains 3 genes (PGK1, PGM1, SLC2A3), and the esophageal squamous cell carcinoma hypoxia model contains 2 genes (EGFR, ATF3). The findings demonstrated that the survival rate of patients in the high-risk group is lower than in the lower-risk group. Furthermore, we find that three kinds of immune cells (memory activated CD4+ T cells, activated mast cells, and M2 macrophages) have a marked infiltration in the tissues of patients in the high-risk group. Moreover, we find that PD-L1 and CD244 are highly expressed in high-risk groups.</p> </sec> <sec><title>Conclusions</title><p>Our data demonstrate that oxygen deprivation is correlated with prognosis and the incidence of immune cell infiltration in patients with both types of esophageal cancer, which provides an immunological perspective for the development of personalized therapy.</p> </sec> </abstract>


2021 ◽  
Author(s):  
Haiqin Ping ◽  
Xingqing Jia ◽  
Hengning Ke

Abstract Pancreatic cancer is one of the most lethal malignancies and currently therapies are severely lacking. In this study, we aimed to establish a novel ferroptosis-related lncRNAs signature to predict the prognosis of patients with pancreatic cancer and evaluate the predictive abilities of candidate lncRNAs. According to The Cancer Genome Atlas (TCGA) database, a total of 182 patients with pancreatic cancer were included in our study. Ferroptosis-related lncRNAs were screened by Pearson correlation analysis with 60 reported ferroptosis-related genes. Through univariate, least absolute shrinkage and selection operator (LASSO) regression and multivariate regression analyses, a novel signature based on five ferroptosis-related lncRNAs(ZNF236-DT, CASC8, PAN3-AS1, SH3PXD2A-AS1, LINP1) was constructed. Risk-related differentially expressed genes (DEGs) were subjected to enrichment analyses for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis.The results revealed that that immune cell infiltration, immune-related functions and checkpoints were factors to affect prognoisis of pancreatic cancer. In summary, we identified the prognostic ferroptosis-related lncRNAs in pancreatic cancer and these lncRNAs may serve as therapeutic targets for pancreatic cancer.


2021 ◽  
Author(s):  
J Nieves ◽  
A Gonzalez

AbstractIt is well known that, for a particular tissue, the homeostatic and cancer attractors are well apart both in gene expression and in protein expression spaces. By using data for 15 tissues and the corresponding tumors from The Cancer Genome Atlas, and for 49 normal tissues and 20 tumors from The Human Protein Atlas, we show that the set of normal attractors are also well separated from the set of tumors. Roughly speaking, one may say that there is a cancer progression axis orthogonal to the normal tissue differentiation and cancer manifolds. This separation suggests that therapies targeting common genes, which define the cancer axis, may be effective, irrespective of the tissue of origin.


2016 ◽  
Author(s):  
Nao Hiranuma ◽  
Jie Liu ◽  
Chaozhong Song ◽  
Jacob Goldsmith ◽  
Michael Dorschner ◽  
...  

About 16% of breast cancers fall into a clinically aggressive category designated triple negative (TNBC) due to a lack of ERBB2, estrogen receptor and progesterone receptor expression1-3. The mutational spectrum of TNBC has been characterized as part of The Cancer Genome Atlas (TCGA)4; however, snapshots of primary tumors cannot reveal the mechanisms by which TNBCs progress and spread. To address this limitation we initiated the Intensive Trial of OMics in Cancer (ITOMIC)-001, in which patients with metastatic TNBC undergo multiple biopsies over space and time5. Whole exome sequencing (WES) of 67 samples from 11 patients identified 426 genes containing multiple distinct single nucleotide variants (SNVs) within the same sample, instances we term Multiple SNVs affecting the Same Gene and Sample (MSSGS). We find that >90% of MSSGS result from cis-compound mutations (in which both SNVs affect the same allele), that MSSGS comprised of SNVs affecting adjacent nucleotides arise from single mutational events, and that most other MSSGS result from the sequential acquisition of SNVs. Some MSSGS drive cancer progression, as exemplified by a TNBC driven by FGFR2(S252W;Y375C). MSSGS are more prevalent in TNBC than other breast cancer subtypes and occur at higher-than-expected frequencies across TNBC samples within TCGA. MSSGS may denote genes that play as yet unrecognized roles in cancer progression.


Sign in / Sign up

Export Citation Format

Share Document