scholarly journals Elizabethkingia anophelisresponse to iron stress: physiologic, genomic, and transcriptomic analyses

2019 ◽  
Author(s):  
Shicheng Chen ◽  
Benjamin K. Johnson ◽  
Ting Yu ◽  
Brooke N. Nelson ◽  
Edward D. Walker

AbstractElizabethkingia anophelisbacteria encounter fluxes of iron in the midgut of mosquitoes, where they live as symbionts. They also establish bacteremia with severe clinical manifestations in humans, and live in water service lines in hospitals. In this study, we investigated the global gene expression responses ofE. anophelisto iron fluxes in the midgut of femaleAnopheles stephensimosquitoes fed sucrose or blood, and in iron-poor or iron-rich culture conditions. Of 3,686 transcripts revealed by RNAseq technology, 218 were upregulated while 112 were down-regulated under iron-poor conditions. Most of these differentially expressed genes (DEGs) were enriched in functional groups assigned within “biological process,” “cell component” and “molecular function” categories.E. anophelispossessed 4 iron/heme acquisition systems. Hemolysin gene expression was significantly repressed when cells were grown under iron-rich or high temperature (37°C) conditions. Furthermore, hemolysin gene expression was down-regulated after a blood meal, indicating thatE. anopheliscells responded to excess iron and its associated physiological stress by limiting iron loading. By contrast, genes encoding respiratory chain proteins were up-regulated under iron-rich conditions, allowing these iron-containing proteins to chelate intracellular free iron.In vivostudies showed that growth ofE. anopheliscells increased 3-fold in blood-fed mosquitoes over those in sucrose-fed ones. Deletion of aerobactin synthesis genes led to impaired cell growth in both iron-rich and iron-poor media. Mutants showed more susceptibility to H2O2toxicity and less biofilm formation than did wild-type cells. Mosquitoes withE. anophelisexperimentally colonized in their guts produced more eggs than did those treated with erythromycin or left unmanipulated, as controls. Results reveal thatE. anophelisbacteria respond to varying iron concentration in the mosquito gut, harvest iron while fending off iron-associated stress, contribute to lysis of red blood cells, and positively influence mosquito host fecundity.

2010 ◽  
Vol 104 (7) ◽  
pp. 941-950 ◽  
Author(s):  
Kenji Saito ◽  
Yutaka Ohta ◽  
Manabu Sami ◽  
Tomomasa Kanda ◽  
Hisanori Kato

Recent transcriptomics studies on the effect of long-term or severe energy restriction (ER) have revealed that many genes are dynamically modulated by this condition in rodents. The present study was conducted to define the global gene expression profile in response to mild ER treatment. Growing rats were fed with reduced amount of diet (5–30 % ER) for 1 week or 1 month. Using DNA microarray analysis of the liver, seventy-two genes that were consistently changed through the different ER levels were identified. Many were related to lipid metabolism including genes encoding key enzymes such as carnitine palmitoyltransferase 1 and fatty acid synthase. Interestingly, a number of genes were altered even by 5 % ER for 1 week where no differences in weight gain were observed. The information obtained in the present study can be used as a valuable reference data source in the transcriptomics studies of food and nutrition in which subtle differences in food intake sometimes hinder appropriate interpretation of the data.


2005 ◽  
Vol 90 (7) ◽  
pp. 4299-4308 ◽  
Author(s):  
Nima Soleymanlou ◽  
Igor Jurisica ◽  
Ori Nevo ◽  
Francesca Ietta ◽  
Xin Zhang ◽  
...  

Abstract Background: Oxygen plays a central role in human placental pathologies including preeclampsia, a leading cause of fetal and maternal death and morbidity. Insufficient uteroplacental oxygenation in preeclampsia is believed to be responsible for the molecular events leading to the clinical manifestations of this disease. Design: Using high-throughput functional genomics, we determined the global gene expression profiles of placentae from high altitude pregnancies, a natural in vivo model of chronic hypoxia, as well as that of first-trimester explants under 3 and 20% oxygen, an in vitro organ culture model. We next compared the genomic profile from these two models with that obtained from pregnancies complicated by preeclampsia. Microarray data were analyzed using the binary tree-structured vector quantization algorithm, which generates global gene expression maps. Results: Our results highlight a striking global gene expression similarity between 3% O2-treated explants, high-altitude placentae, and importantly placentae from preeclamptic pregnancies. We demonstrate herein the utility of explant culture and high-altitude placenta as biologically relevant and powerful models for studying the oxygen-mediated events in preeclampsia. Conclusion: Our results provide molecular evidence that aberrant global placental gene expression changes in preeclampsia may be due to reduced oxygenation and that these events can successfully be mimicked by in vivo and in vitro models of placental hypoxia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kornphimol Kulthong ◽  
Guido J. E. J. Hooiveld ◽  
Loes Duivenvoorde ◽  
Ignacio Miro Estruch ◽  
Victor Marin ◽  
...  

AbstractGut-on-chip devices enable exposure of cells to a continuous flow of culture medium, inducing shear stresses and could thus better recapitulate the in vivo human intestinal environment in an in vitro epithelial model compared to static culture methods. We aimed to study if dynamic culture conditions affect the gene expression of Caco-2 cells cultured statically or dynamically in a gut-on-chip device and how these gene expression patterns compared to that of intestinal segments in vivo. For this we applied whole genome transcriptomics. Dynamic culture conditions led to a total of 5927 differentially expressed genes (3280 upregulated and 2647 downregulated genes) compared to static culture conditions. Gene set enrichment analysis revealed upregulated pathways associated with the immune system, signal transduction and cell growth and death, and downregulated pathways associated with drug metabolism, compound digestion and absorption under dynamic culture conditions. Comparison of the in vitro gene expression data with transcriptome profiles of human in vivo duodenum, jejunum, ileum and colon tissue samples showed similarities in gene expression profiles with intestinal segments. It is concluded that both the static and the dynamic gut-on-chip model are suitable to study human intestinal epithelial responses as an alternative for animal models.


2006 ◽  
Vol 80 (3) ◽  
pp. 1405-1413 ◽  
Author(s):  
Zongyi Hu ◽  
Zhensheng Zhang ◽  
Jin Woo Kim ◽  
Ying Huang ◽  
T. Jake Liang

ABSTRACT Hepatitis B virus X (HBX) is essential for the productive infection of hepatitis B virus (HBV) in vivo and has a pleiotropic effect on host cells. We have previously demonstrated that the proteasome complex is a cellular target of HBX, that HBX alters the proteolytic activity of proteasome in vitro, and that inhibition of proteasome leads to enhanced viral replication, suggesting that HBX and proteasome interaction plays a crucial role in the life cycle and pathogenesis of HBV. In the present study, we tested the effect of HBX on the proteasome activities in vivo in a transgenic mouse model in which HBX expression is developmentally regulated by the mouse major urinary promoter in the liver. In addition, microarray analysis was performed to examine the effect of HBX expression on the global gene expression profile of the liver. The results showed that the peptidase activities of the proteasome were reduced in the HBX transgenic mouse liver, whereas the activity of another cellular protease was elevated, suggesting a compensatory mechanism in protein degradation. In the microarray analysis, diverse genes were altered in the HBX mouse livers and the number of genes with significant changes increased progressively with age. Functional clustering showed that a number of genes involved in transcription and cell growth were significantly affected in the HBX mice, possibly accounting for the observed pleiotropic effect of HBX. In particular, insulin-like growth factor-binding protein 1 was down-regulated in the HBX mouse liver. The down-regulation was similarly observed during acute woodchuck hepatitis virus infection. Other changes including up-regulation of proteolysis-related genes may also contribute to the profound alterations of liver functions in HBV infection.


2007 ◽  
Vol 189 (7) ◽  
pp. 2629-2636 ◽  
Author(s):  
Hyun-Jung Lee ◽  
So Hyun Bang ◽  
Kyu-Ho Lee ◽  
Soon-Jung Park

ABSTRACT In pathogenic bacteria, the ability to acquire iron, which is mainly regulated by the ferric uptake regulator (Fur), is essential to maintain growth as well as its virulence. In Vibrio vulnificus, a human pathogen causing gastroenteritis and septicemia, fur gene expression is positively regulated by Fur when the iron concentration is limited (H.-J. Lee et al., J. Bacteriol. 185:5891-5896, 2003). Footprinting analysis revealed that an upstream region of the fur gene was protected by the Fur protein from DNase I under iron-depleted conditions. The protected region, from −142 to −106 relative to the transcription start site of the fur gene, contains distinct AT-rich repeats. Mutagenesis of this repeated sequence resulted in abolishment of binding by Fur. To confirm the role of this cis-acting element in Fur-mediated control of its own gene in vivo, fur expression was monitored in V. vulnificus strains using a transcriptional fusion containing the mutagenized Fur-binding site (fur mt::luxAB). Expression of fur mt::luxAB showed that it was not regulated by Fur and was not influenced by iron concentration. Therefore, this study demonstrates that V. vulnificus Fur acts as a positive regulator under iron-limited conditions by direct interaction with the fur upstream region.


2020 ◽  
Author(s):  
Róbert Pálovics ◽  
Andreas Keller ◽  
Nicholas Schaum ◽  
Weilun Tan ◽  
Tobias Fehlmann ◽  
...  

Slowing or reversing biological ageing would have major implications for mitigating disease risk and maintaining vitality. While an increasing number of interventions show promise for rejuvenation, the effectiveness on disparate cell types across the body and the molecular pathways susceptible to rejuvenation remain largely unexplored. We performed single-cell RNA-sequencing on 13 organs to reveal cell type specific responses to young or aged blood in heterochronic parabiosis. Adipose mesenchymal stromal cells, hematopoietic stem cells, hepatocytes, and endothelial cells from multiple tissues appear especially responsive. On the pathway level, young blood invokes novel gene sets in addition to reversing established ageing patterns, with the global rescue of genes encoding electron transport chain subunits pinpointing a prominent role of mitochondrial function in parabiosis-mediated rejuvenation. Intriguingly, we observed an almost universal loss of gene expression with age that is largely mimicked by parabiosis: aged blood reduces global gene expression, and young blood restores it. Altogether, these data lay the groundwork for a systemic understanding of the interplay between blood-borne factors and cellular integrity.


2018 ◽  
Vol 17 (2) ◽  
pp. 41-46 ◽  
Author(s):  
S. G. Zakharov ◽  
A. K. Golenkov ◽  
A. V. Misyurin ◽  
E. V. Kataeva ◽  
A. A. Rudakova ◽  
...  

Introduction.The given data of fundamental studies of apoptosis processes in B-cell lymphocytic leukemia (B-CLL) testifies about the complexity and variety of mechanisms affecting the kinetics of normal cells and tumor lymphocytes in this disease. It is important to study the severity of clinical manifestations of the disease depending on the expression of the genes that modulate apoptosis.The purposeof the study is to compare the activity of genes encoding apoptosis modulators, the cell cycle and cancer-testicular PRAME protein with clinical manifestations of the disease in primary patients with B-CLL.Materials and methods.The level of expression of the proapoptotic genes FAS, TRAIL, TNFR2, DR4/5 and DR3, as well as the HSP27, XIAP genes, blocking apoptosis was determined in 23 patients with newly diagnosed chronic B-CLL. In addition, expression of genes TP53 and P21 and cancer-testis gene PRAME are tested.Results.According to the multivariate regression analysis, the FAS gene expression in the onset of the disease had the greatest impact on the clinical characteristics of the disease. In this connection, the patients were divided into groups with normal (group) and low gene level (group II). A low level of FAS expression (Me 387 %) was associated with stage II disease (p = 0.03), a large number of lympho cytes (p = 0.001), fewer erythrocytes (p = 0.08), and a lower level of TNFR2 gene expression (p = 0.08), high level of expression of XIAP, HSP27, P21. Overall, the anti-apoptotic potential in Group II patients was higher, which was accompanied by more pronounced clinical manifestations of the disease.Conclusions.The increased anti-apoptotic potential of tumor lymphocytes in newly diagnosed B-CLL is accompanied by a larger tumor mass and greater clinical and hematological manifestation of the disease.


Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2012 ◽  
Vol 87 (Suppl_1) ◽  
pp. 192-192
Author(s):  
Callie V. Barnwell ◽  
Christopher M. Ashwell ◽  
Peter W. Farin ◽  
William T. Farmer ◽  
Charlotte E. Farin

Sign in / Sign up

Export Citation Format

Share Document