scholarly journals Mapping Vector Field of Single Cells

2019 ◽  
Author(s):  
Xiaojie Qiu ◽  
Yan Zhang ◽  
Dian Yang ◽  
Shayan Hosseinzadeh ◽  
Li Wang ◽  
...  

AbstractUnderstanding how gene expression in single cells progress over time is vital for revealing the mechanisms governing cell fate transitions. RNA velocity, which infers immediate changes in gene expression by comparing levels of new (unspliced) versus mature (spliced) transcripts (La Manno et al. 2018), represents an important advance to these efforts. A key question remaining is whether it is possible to predict the most probable cell state backward or forward over arbitrary time-scales. To this end, we introduce an inclusive model (termed Dynamo) capable of predicting cell states over extended time periods, that incorporates promoter state switching, transcription, splicing, translation and RNA/protein degradation by taking advantage of scRNA-seq and the co-assay of transcriptome and proteome. We also implement scSLAM-seq by extending SLAM-seq to plate-based scRNA-seq (Hendriks et al. 2018; Erhard et al. 2019; Cao, Zhou, et al. 2019) and augment the model by explicitly incorporating the metabolic labelling of nascent RNA. We show that through careful design of labelling experiments and an efficient mathematical framework, the entire kinetic behavior of a cell from this model can be robustly and accurately inferred. Aided by the improved framework, we show that it is possible to reconstruct the transcriptomic vector field from sparse and noisy vector samples generated by single cell experiments. The reconstructed vector field further enables global mapping of potential landscapes that reflects the relative stability of a given cell state, and the minimal transition time and most probable paths between any cell states in the state space. This work thus foreshadows the possibility of predicting long-term trajectories of cells during a dynamic process instead of short time velocity estimates. Our methods are implemented as an open source tool, dynamo (https://github.com/aristoteleo/dynamo-release).

Development ◽  
1992 ◽  
Vol 114 (4) ◽  
pp. 939-946 ◽  
Author(s):  
J.B. Skeath ◽  
S.B. Carroll

The Drosophila embryonic central nervous system develops from sets of progenitor neuroblasts which segregate from the neuroectoderm during early embryogenesis. Cells within this region can follow either the neural or epidermal developmental pathway, a decision guided by two opposing classes of genes. The proneural genes, including the members of the achaete-scute complex (AS-C), promote neurogenesis, while the neurogenic genes prevent neurogenesis and facilitate epidermal development. To understand the role that proneural gene expression and regulation play in the choice between neurogenesis and epidermogenesis, we examined the temporal and spatial expression pattern of the achaete (ac) regulatory protein in normal and neurogenic mutant embryos. The ac protein is first expressed in a repeating pattern of four ectodermal cell clusters per hemisegment. Even though 5–7 cells initially express ac in each cluster, only one, the neuroblast, continues to express ac. The repression of ac in the remaining cells of the cluster requires zygotic neurogenic gene function. In embryos lacking any one of five genes, the restriction of ac expression to single cells does not occur; instead, all cells of each cluster continue to express ac, enlarge, delaminate and become neuroblasts. It appears that one key function of the neurogenic genes is to silence proneural gene expression within the nonsegregating cells of the initial ectodermal clusters, thereby permitting epidermal development.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 446-446
Author(s):  
Alejo E Rodriguez-Fraticelli ◽  
Caleb S Weinreb ◽  
Allon Moshe Klein ◽  
Shou-Wen Wang ◽  
Fernando D Camargo

Blood regeneration upon transplantation relies on the activity of long-term repopulating hematopoietic stem cells (LT-HSCs). One of the major controversies in hematopoiesis relates to the apparently different properties that HSCs have in transplantation versus unperturbed settings. In unperturbed steady state hematopoiesis, the most potent HSCs appear to be mostly dormant, and only producing platelet-lineage cells. In turn, upon transplant, even a single transplanted HSC can actively divide and regenerate hundreds of millions of blood progenitors of all lineages. It would thus appear that HSCs have different fundamental properties in each study system. However, most transplantation studies have only tracked the lineage output of the transplanted HSC clones, and rarely the regeneration of the HSC compartment itself. In addition, clonal assays have not been performed at sufficient resolution to fully capture the diversity and clonal complexity of the regenerated HSC compartment. Here, we have used expressible barcodes, which can be sequenced in conventional single cell RNAseq assays, to simultaneously record the functional outcomes and transcriptional states of thousands of HSCs. Our analysis revealed multiple clonal HSC behaviors following transplantation that drastically differ in their differentiation activity, lineage-bias and self-renewal. Surprisingly, we witnessed a large fraction of clones that efficiently repopulate the HSC compartment but show limited contribution to differentiated progeny. Furthermore, these inactive clones have increased competitive multilineage serial repopulating capacity, implying that shortly after transplant a subset of clones reestablishes the native-like LT-HSC behaviors. Our results also argue that this clonal distribution of labor is controlled by cell autonomous, heritable properties (i.e. the epigenetic cell state). Then, using only our clonal readouts to segregate single HSC transcriptomes, we unveiled the transcriptional signatures that associated with unique HSC outcomes (platelet bias, clonal expansion, dormancy, etc.) and unraveled, for the first time, a gene signature for functional long-term serially repopulating clones. We interrogated the drivers of this cell state using an in vivo inducible CRISPR screening and identified 5 novel regulators that are required to regenerate the HSC compartment in a cell autonomous fashion. In conclusion, we demonstrate that functional LT-HSCs share more similar properties in native and transplantation hematopoiesis than previously expected. Consequently, we unveil a definition of the essential, common functional properties of HSCs and the molecular programs that control them. Figure 1 Disclosures No relevant conflicts of interest to declare.


Open Biology ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 170030 ◽  
Author(s):  
Peng Dong ◽  
Zhe Liu

Animal development is orchestrated by spatio-temporal gene expression programmes that drive precise lineage commitment, proliferation and migration events at the single-cell level, collectively leading to large-scale morphological change and functional specification in the whole organism. Efforts over decades have uncovered two ‘seemingly contradictory’ mechanisms in gene regulation governing these intricate processes: (i) stochasticity at individual gene regulatory steps in single cells and (ii) highly coordinated gene expression dynamics in the embryo. Here we discuss how these two layers of regulation arise from the molecular and the systems level, and how they might interplay to determine cell fate and to control the complex body plan. We also review recent technological advancements that enable quantitative analysis of gene regulation dynamics at single-cell, single-molecule resolution. These approaches outline next-generation experiments to decipher general principles bridging gaps between molecular dynamics in single cells and robust gene regulations in the embryo.


2019 ◽  
Author(s):  
Hiraku Miyagi ◽  
Michio Hiroshima ◽  
Yasushi Sako

AbstractGrowth factors regulate cell fates, including their proliferation, differentiation, survival, and death, according to the cell type. Even when the response to a specific growth factor is deterministic for collective cell behavior, significant levels of fluctuation are often observed between single cells. Statistical analyses of single-cell responses provide insights into the mechanism of cell fate decisions but very little is known about the distributions of the internal states of cells responding to growth factors. Using multi-color immunofluorescent staining, we have here detected the phosphorylation of seven elements in the early response of the ERBB–RAS–MAPK system to two growth factors. Among these seven elements, five were analyzed simultaneously in distinct combinations in the same single cells. Although principle component analysis suggested cell-type and input specific phosphorylation patterns, cell-to-cell fluctuation was large. Mutual information analysis suggested that cells use multitrack (bush-like) signal transduction pathways under conditions in which clear cell fate changes have been reported. The clustering of single-cell response patterns indicated that the fate change in a cell population correlates with the large entropy of the response, suggesting a bet-hedging strategy is used in decision making. A comparison of true and randomized datasets further indicated that this large variation is not produced by simple reaction noise, but is defined by the properties of the signal-processing network.Author SummaryHow extracellular signals, such as growth factors (GFs), induce fate changes in biological cells is still not fully understood. Some GFs induce cell proliferation and others induce differentiation by stimulating a common reaction network. Although the response to each GF is reproducible for a cell population, not all single cells respond similarly. The question that arises is whether a certain GF conducts all the responding cells in the same direction during a fate change, or if it initially stimulates a variety of behaviors among single cells, from which the cells that move in the appropriate direction are later selected. Our current statistical analysis of single-cell responses suggests that the latter process, which is called a bet-hedging mechanism is plausible. The complex pathways of signal transmission seem to be responsible for this bet-hedging.


2019 ◽  
Author(s):  
Kiara C. Eldred ◽  
Cameron Avelis ◽  
Robert J. Johnston ◽  
Elijah Roberts

AbstractNervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ∼250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data we developed a quantitative, stochastic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates.Author SummaryThe development of a cell in a mammalian tissue is governed by a complex regulatory network that responds to many input signals to give the cell a distinct identity, a process referred to as cell-fate specification. Some of these cell fates have binary on-or-off gene expression patterns, while others have graded gene expression that changes across the tissue. Differentiation of the photoreceptor cells that sense light in the mouse retina provides a good example of this process. Here, we explore how complex patterns of cell fates are specified in the mouse retina by building a computational model based on analysis of a large number of photoreceptor cells from microscopy images of whole retinas. We use the data and the model to study what exactly it means for a cell to have a binary or graded cell fate and how these cell fates can be distinguished from each other. Our study shows how tens-of-thousands of individual photoreceptor cells can be patterned across a complex tissue by a regulatory network, creating a different outcome depending upon the received inputs.


2021 ◽  
Author(s):  
Simon L Freedman ◽  
Bingxian Xu ◽  
Sidhartha Goyal ◽  
Madhav Mani

Inspired by Waddington's illustration of an epigenetic landscape, cell-fate transitions have been envisioned as bifurcating dynamical systems, wherein the dynamics of an exogenous signal couples to a cell's enormously complex signaling and transcriptional machinery, eliciting a qualitative transition in the collective state of a cell -- its fate. Single-cell RNA sequencing (scRNA-seq) measures the distributions of possible transcriptional states in large populations of differentiating cells, making it possible to interrogate cell fate-transitions at whole-genome scales with molecular-scale precision. However, it remains unclear how to bridge the disparate scales of the dynamics of whole transcriptomes to the molecules that define the collective fate-transitions in Waddington's geometric vision. We bridge these scales by showing that bifurcations in transcriptional states can be analytically pinpointed and their genetic bases revealed, directly from data. We demonstrate the power of our conceptual framework and analytical scheme in the context of a recent scRNA-seq based investigation of a classic case-study of sequential fate decisions -- the transition of hematopoietic stem cells to neutrophils. Our work provides a rigorous and model-independent mathematical framework for detecting and categorizing transitions in cell-fate directly from sequencing data, aiding in gene network inference and determination of the salient properties of cellular differentiation, such as when cell fate transitions are reversible and how these transitions generate a diversity of cell types.


2021 ◽  
Author(s):  
Josh Saul ◽  
Takashi Hirose ◽  
Robert Horvitz

Cell identity is characterized by a distinct combination of gene expression, cell morphology and cellular function established as progenitor cells divide and differentiate. Following establishment, cell identities can be unstable and require active and continuous maintenance throughout the remaining life of a cell. Mechanisms underlying the maintenance of cell identities are incompletely understood. Here we show that the gene ctbp-1, which encodes the transcriptional corepressor C-terminal binding protein-1 (CTBP-1), is essential for the maintenance of the identities of the two AIA interneurons in the nematode Caenorhabditis elegans. ctbp-1 is not required for the establishment of the AIA cell fate but rather functions cell-autonomously and can act in older worms to maintain proper AIA gene expression, morphology and function. From a screen for suppressors of the ctbp-1 mutant phenotype, we identified the gene egl-13, which encodes a SOX family transcription factor. We found that egl-13 regulates AIA function and aspects of AIA gene expression, but not AIA morphology. We conclude that the CTBP-1 protein maintains AIA cell identity in part by utilizing EGL-13 to repress transcriptional activity in the AIAs. More generally, we propose that transcriptional corepressors like CTBP-1 might be critical factors in the maintenance of cell identities, harnessing the DNA-binding specificity of transcription factors like EGL-13 to selectively regulate gene expression in a cell-specific manner.


2018 ◽  
Vol 14 (4) ◽  
Author(s):  
Delphine Aymoz ◽  
Carme Solé ◽  
Jean‐Jerrold Pierre ◽  
Marta Schmitt ◽  
Eulàlia de Nadal ◽  
...  

2017 ◽  
Vol 214 (7) ◽  
pp. 2005-2021 ◽  
Author(s):  
Adam J. Mead ◽  
Wen Hao Neo ◽  
Nikolaos Barkas ◽  
Sahoko Matsuoka ◽  
Alice Giustacchini ◽  
...  

Although previous studies suggested that the expression of FMS-like tyrosine kinase 3 (Flt3) initiates downstream of mouse hematopoietic stem cells (HSCs), FLT3 internal tandem duplications (FLT3 ITDs) have recently been suggested to intrinsically suppress HSCs. Herein, single-cell interrogation found Flt3 mRNA expression to be absent in the large majority of phenotypic HSCs, with a strong negative correlation between Flt3 and HSC-associated gene expression. Flt3-ITD knock-in mice showed reduced numbers of phenotypic HSCs, with an even more severe loss of long-term repopulating HSCs, likely reflecting the presence of non-HSCs within the phenotypic HSC compartment. Competitive transplantation experiments established that Flt3-ITD compromises HSCs through an extrinsically mediated mechanism of disrupting HSC-supporting bone marrow stromal cells, with reduced numbers of endothelial and mesenchymal stromal cells showing increased inflammation-associated gene expression. Tumor necrosis factor (TNF), a cell-extrinsic potent negative regulator of HSCs, was overexpressed in bone marrow niche cells from FLT3-ITD mice, and anti-TNF treatment partially rescued the HSC phenotype. These findings, which establish that Flt3-ITD–driven myeloproliferation results in cell-extrinsic suppression of the normal HSC reservoir, are of relevance for several aspects of acute myeloid leukemia biology.


Sign in / Sign up

Export Citation Format

Share Document