scholarly journals Exploring the design space of recombinase logic circuits.

2019 ◽  
Author(s):  
Sarah Guiziou ◽  
Guillaume Perution-Kihli ◽  
Federico Ulliana ◽  
Michel Leclere ◽  
Jerome Bonnet

Logic circuits operating in living cells are generally built by mimicking electronic layouts, and scale-up is accomplished using additional layers of elementary logic gates like NOT and NOR gates. Recombinase-based logic, in which logic is implemented using DNA inversion or excision, allows for highly efficient, compact and single-layer design architectures. However, recombinase logic architectures depart from electronic design principles, and gate design performed empirically is challenging for an increasing number of inputs. Here we used a combinatorial approach to explore the design space of recombinase logic devices. We generated combinations and permutations of recombination sites, genes, and regulatory elements, for a total of ~19 million designs supporting the implementation of all 2- and 3-input logic functions and up to 92% of 4-input logic functions. We estimated the influence of different design constraints on the number of executable functions, and found that the use of DNA inversion and transcriptional terminators were key factors to implement the vast majority of logic functions. We provide a user-friendly interface, called RECOMBINATOR (http://recombinator.lirmm.fr/index.php), that enable users to navigate the design space of recombinase-based logic, find architectures implementing a specific logic function and sort them according to various biological criteria. Finally, we define a set of 16 architectures from which all 256 3-input logic functions can be derived. This work provides a theoretical foundation for the systematic exploration and design of single-layer recombinase logic devices.

Author(s):  
Sepher Tabrizchi ◽  
Fazel Sharifi ◽  
Abdel-Hameed A. Badawy

Traditional silicon binary circuits continue to face challenges such as high leakage power dissipation and large area of interconnections. Multiple-Valued Logic (MVL) and nano-devices are two feasible solutions to overcome these problems. In this paper, we present a novel method to design ternary logic circuits based on Carbon Nanotube Field Effect Transistors (CNFETs). The proposed designs use the unique properties of CNFETs, e.g., adjusting the Carbon Nanotube (CNT) diameters to have the desired threshold voltage and have the same mobility of P-FET and N-FET transistors. Each of our designed logic circuits implements a logic function and its complementary via a control signal. Also, these circuits have a high impedance state which saves power while the circuits are not in use. We show a more detailed application of our approach by designing a two-digit adder-subtractor circuit. We simulate the proposed ternary circuits using HSPICE via standard 32nm CNFET technology. The simulation results indicate the correct operation of the designs under different process, voltage and temperature (PVT) variations. Moreover, we designed a two-digit adder/subtractor and a power efficient ternary logic ALU based on the proposed gates. Simulation results show that the two-digit adder/subtractor using our proposed gates has 12X and 5X lower power consumption and PDP (power delay product) respectively, compared to previous designs.


Nanoscale ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 5048-5057 ◽  
Author(s):  
Siqi Zhang ◽  
Kai-Bin Li ◽  
Wei Shi ◽  
Jie Zhang ◽  
De-Man Han ◽  
...  

In this work, we developed a magnetic bead/DNA system to construct a library of logic gates, enabling the sensing of multiplex target miRNAs. The CHA-based multiplex detection system can distinguish individual target miRNAs under a logic function control.


2008 ◽  
Vol 1067 ◽  
Author(s):  
Alexander Khitun ◽  
Mingqiang Bao ◽  
Yina Wu ◽  
Ji-Young Kim ◽  
Augustin Hong ◽  
...  

ABSTRACTWe analyze spin wave-based logic circuits as a possible route to building reconfigurable magnetic circuits compatible with conventional electron-based devices. A distinctive feature of the spin wave logic circuits is that a bit of information is encoded into the phase of the spin wave. It makes possible to transmit information as a magnetization signal through magnetic waveguides without the use of an electric current. By exploiting sin wave superposition, a set of logic gates such as AND, OR, and Majority gate can be realized in one circuit. We present experimental data illustrating the performance of a three-terminal micrometer scale spin wave-based logic device fabricated on a silicon platform. The device operates in the GHz frequency range and at room temperature. The output power modulation is achieved via the control of the relative phases of two input spin wave signals. The obtained data shows the possibility of using spin waves for achieving logic functionality. The scalability of the spin wave-based logic devices is defined by the wavelength of the spin wave, which depends on the magnetic material and waveguide geometry. Potentially, a multifunctional spin wave logic gate can be scaled down to 0.1μm2. Another potential advantage of the spin wave-based logic circuitry is the ability to implement logic gates with fewer elements as compared to CMOS-based circuits in achieving same functionality. The shortcomings and disadvantages of the spin wave-based devices are also discussed.


2021 ◽  
Author(s):  
Shilpa Mehta

Most microprocessors and microcontrollers are based on Digital Electronics building Blocks. Digital Electronics gives us a number of combinational and sequential circuits for various arithmetic and logical operations. These include Adders, Subtracters, Encoders, Decoders, Multiplexers, DE multiplexers and Flip Flops. These further combine into higher configurations to perform advanced operations. These operations are done using logic circuits in digital electronics. But in this paper, we explore the human reasoning approach using artificial neural networks. We will look into neural implementations of logic gates implemented with SLP (Single layer perceptron) and MLP (Multi-Layer Perceptron). We will also look into recurrent neural architectures to make basic memory elements, viz. Flip Flops which use feedback and may involve in one or more neuron layers.


2003 ◽  
Vol 26 (2) ◽  
pp. 111-114 ◽  
Author(s):  
Muhammad Taher Abuelma'atti

In this letter a new technique is introduced for implementing the basic logic functions using analog current-mode techniques. By expanding the logic functions in power series expressions, and using summers and multipliers, realization of the basic logic functions is simplified. Since no transistors are working in saturation, the problem of fan-out is alleviated. To illustrate the proposed technique, a circuit for simultaneous realization of the logic functions NOT, OR, NAND and XOR is considered. SPICE simulation results, obtained with 3 V supply, are included


2015 ◽  
Vol 3 (21) ◽  
pp. 5524-5532 ◽  
Author(s):  
Prabhpreet Singh ◽  
Harminder Singh ◽  
Gaurav Bhargava ◽  
Subodh Kumar

Chemosensor 1 shows three different responses towards Cu2+, acetate and Cu(OAc)2 ion pair following triple-signaling mechanisms and also demonstrate fabrication of INH, IMP, AND, NOR logic gates.


Author(s):  
Christopher J. Robinson ◽  
Jonathan Tellechea-Luzardo ◽  
Pablo Carbonell ◽  
Adrian J. Jervis ◽  
Cunyu Yan ◽  
...  

Metabolic engineering technologies have been employed with increasing success over the last three decades for the engineering and optimization of industrial host strains to competitively produce high-value chemical targets. To this end, continued reductions in the time taken from concept, to development, to scale-up are essential. Design–Build–Test–Learn pipelines that are able to rapidly deliver diverse chemical targets through iterative optimization of microbial production strains have been established. Biofoundries are employing in silico tools for the design of genetic parts, alongside combinatorial design of experiments approaches to optimize selection from within the potential design space of biological circuits based on multi-criteria objectives. These genetic constructs can then be built and tested through automated laboratory workflows, with performance data analysed in the learn phase to inform further design. Successful examples of rapid prototyping processes for microbially produced compounds reveal the potential role of biofoundries in leading the sustainable production of next-generation bio-based chemicals.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 542 ◽  
Author(s):  
Haifeng Zhang ◽  
Zhaowei Zhang ◽  
Mingyu Gao ◽  
Li Luo ◽  
Shukai Duan ◽  
...  

A memristor is a nanoscale electronic element that displays a threshold property, non-volatility, and variable conductivity. Its composite circuits are promising for the implementation of intelligence computation, especially for logic operations. In this paper, a flexible logic circuit composed of a spintronic memristor and complementary metal-oxide-semiconductor (CMOS) switches is proposed for the implementation of the basic unbalanced ternary logic gates, including the NAND, NOR, AND, and OR gates. Meanwhile, due to the participation of the memristor and CMOS, the proposed circuit has advantages in terms of non-volatility and load capacity. Furthermore, the input and output of the proposed logic are both constant voltages without signal degradation. All these three merits make the proposed circuit capable of realizing the cascaded logic functions. In order to demonstrate the validity and effectiveness of the entire work, series circuit simulations were carried out. The experimental results indicated that the proposed logic circuit has the potential to realize almost all basic ternary logic gates, and even some more complicated cascaded logic functions with a compact circuit construction, high efficiency, and good robustness.


Sign in / Sign up

Export Citation Format

Share Document