scholarly journals Limits and constraints on mechanisms of cell-cycle regulation imposed by cell sizehomeostasis measurements

2019 ◽  
Author(s):  
Lisa Willis ◽  
Henrik Jönsson ◽  
Kerwyn Casey Huang

SummaryHigh-throughput imaging has led to an explosion of observations regarding cell-size homeostasis across the kingdoms of life. Among bacteria, “adder” behavior in which a constant size appears to be added during each cell cycle is ubiquitous, while various eukaryotes show other size-homeostasis behaviors. Since interactions between cell-cycle progression and growth ultimately determine size-homeostasis behaviors, we developed a general model of cell proliferation to: 1) discover how the requirement of cell-size homeostasis limits mechanisms of cell-cycle control; 2) predict how features of cell-cycle control translate into size-homeostasis measurements. Our analyses revealed plausible cell-cycle control scenarios that nevertheless fail to regulate cell size, conditions that generate apparent adder behavior without underlying adder mechanisms, cell-cycle features that play unintuitive roles in causing deviations from adder, and distinguishing predictions for extended size-homeostasis statistics according to the underlying control mechanism. The model thus provides holistic insight into the mechanistic implications of cell-size homeostasis measurements.

2004 ◽  
Vol 24 (24) ◽  
pp. 10802-10813 ◽  
Author(s):  
Brandt L. Schneider ◽  
Jian Zhang ◽  
J. Markwardt ◽  
George Tokiwa ◽  
Tom Volpe ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G1-phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.


Author(s):  
Fabin Dang ◽  
Li Nie ◽  
Wenyi Wei

Abstract Cell cycle progression is a tightly regulated process by which DNA replicates and cell reproduces. The major driving force underlying cell cycle progression is the sequential activation of cyclin-dependent kinases (CDKs), which is achieved in part by the ubiquitin-mediated proteolysis of their cyclin partners and kinase inhibitors (CKIs). In eukaryotic cells, two families of E3 ubiquitin ligases, anaphase-promoting complex/cyclosome and Skp1-Cul1-F-box protein complex, are responsible for ubiquitination and proteasomal degradation of many of these CDK regulators, ensuring cell cycle progresses in a timely and precisely regulated manner. In the past couple of decades, accumulating evidence have demonstrated that the dysregulated cell cycle transition caused by inefficient proteolytic control leads to uncontrolled cell proliferation and finally results in tumorigenesis. Based upon this notion, targeting the E3 ubiquitin ligases involved in cell cycle regulation is expected to provide novel therapeutic strategies for cancer treatment. Thus, a better understanding of the diversity and complexity of ubiquitin signaling in cell cycle regulation will shed new light on the precise control of the cell cycle progression and guide anticancer drug development.


Author(s):  
Vivek B. Raina ◽  
Gerben Vader

SummaryCheckpoints cascades coordinate cell cycle progression with essential chromosomal processes. During meiotic G2/prophase, recombination and chromosome synapsis are monitored by what are considered distinct checkpoints [1–3]. In budding yeast, the AAA+ ATPase Pch2 is thought to specifically promote cell cycle delay in response to synapsis defects [4–6]. However, unperturbed pch2Δ cells are delayed in meiotic G2/prophase [6], suggesting paradoxical roles for Pch2 in cell cycle progression. Here, we provide insight into the checkpoint roles of Pch2 and its connection to Hop1, a HORMA domain-containing client protein. Contrary to current understanding, we find that the Pch2-Hop1 module is crucial for checkpoint function in response to both recombination and synapsis defects, thus revealing a shared meiotic checkpoint cascade. Meiotic checkpoint responses are transduced by DNA break-dependent phosphorylation of Hop1 [7, 8]. Based on our data and on the effect of Pch2 on HORMA topology [9–11], we propose that Pch2 promotes checkpoint proficiency by catalyzing the availability of signaling-competent Hop1. Conversely, we demonstrate that Pch2 can act as a checkpoint silencer, also in the face of persistent DNA repair defects. We establish a framework in which Pch2 and Hop1 form a homeostatic module that governs general meiotic checkpoint function. We show that this module can - depending on the cellular context - fuel or extinguish meiotic checkpoint function, which explains the contradictory roles of Pch2 in cell cycle control. Within the meiotic checkpoint, the Pch2-Hop1 module thus operates analogous to the Pch2/TRIP13-Mad2 module in the spindle assembly checkpoint that monitors chromosome segregation [12–16].


Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 995
Author(s):  
Xiaoyan Hou ◽  
Lijun Qiao ◽  
Ruijuan Liu ◽  
Xuechao Han ◽  
Weifang Zhang

Persistent infection of high-risk human papillomavirus (HR-HPV) plays a causal role in cervical cancer. Regulator of chromosome condensation 1 (RCC1) is a critical cell cycle regulator, which undergoes a few post-translational modifications including phosphorylation. Here, we showed that serine 11 (S11) of RCC1 was phosphorylated in HPV E7-expressing cells. However, S11 phosphorylation was not up-regulated by CDK1 in E7-expressing cells; instead, the PI3K/AKT/mTOR pathway promoted S11 phosphorylation. Knockdown of AKT or inhibition of the PI3K/AKT/mTOR pathway down-regulated phosphorylation of RCC1 S11. Furthermore, S11 phosphorylation occurred throughout the cell cycle, and reached its peak during the mitosis phase. Our previous data proved that RCC1 was necessary for the G1/S cell cycle progression, and in the present study we showed that the RCC1 mutant, in which S11 was mutated to alanine (S11A) to mimic non-phosphorylation status, lost the ability to facilitate G1/S transition in E7-expressing cells. Moreover, RCC1 S11 was phosphorylated by the PI3K/AKT/mTOR pathway in HPV-positive cervical cancer SiHa and HeLa cells. We conclude that S11 of RCC1 is phosphorylated by the PI3K/AKT/mTOR pathway and phosphorylation of RCC1 S11 facilitates the abrogation of G1 checkpoint in HPV E7-expressing cells. In short, our study explores a new role of RCC1 S11 phosphorylation in cell cycle regulation.


2000 ◽  
Vol 113 (17) ◽  
pp. 3063-3072 ◽  
Author(s):  
J. Zhao ◽  
C. Zheng ◽  
J. Guan

We have previously identified FAK and its associated signaling pathways as a mediator of cell cycle progression by integrins. In this report, we have analyzed the potential role and mechanism of Pyk2, a tyrosine kinase closely related to FAK, in cell cycle regulation by using tetracycline-regulated expression system as well as chimeric molecules. We have found that induction of Pyk2 inhibited G(1) to S phase transition whereas comparable induction of FAK expression accelerated it. Furthermore, expression of a chimeric protein containing Pyk2 N-terminal and kinase domain and FAK C-terminal domain (PFhy1) increased cell cycle progression as FAK. Conversely, the complementary chimeric molecule containing FAK N-terminal and kinase domain and Pyk2 C-terminal domain (FPhy2) inhibited cell cycle progression to an even greater extent than Pyk2. Biochemical analyses indicated that Pyk2 and FPhy2 stimulated JNK activation whereas FAK or PFhy1 had little effect on it, suggesting that differential activation of JNK by Pyk2 may contribute to its inhibition of cell cycle progression. In addition, Pyk2 and FPhy2 to a greater extent also inhibited Erk activation in cell adhesion whereas FAK and PFhy1 stimulated it, suggesting a role for Erk activation in mediating differential regulation of cell cycle by Pyk2 and FAK. A role for Erk and JNK pathways in mediating the cell cycle regulation by FAK and Pyk2 was also confirmed by using chemical inhibitors for these pathways. Finally, we showed that while FAK and PFhy1 were present in focal contacts, Pyk2 and FPhy2 were localized in the cytoplasm. Interestingly, both Pyk2 and FPhy2 (to a greater extent) were tyrosine phosphorylated and associated with Src and Fyn. This suggested that they may inhibit Erk activation in an analogous manner as the mislocalized FAK mutant (Δ)C14 described previously by competing with endogenous FAK for binding signaling molecules such as Src and Fyn. This model is further supported by an inhibition of endogenous FAK association with active Src by Pyk2 and FPhy2 and a partial rescue by FAK of Pyk2-mediated cell cycle inhibition.


2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14001 ◽  
Author(s):  
Yingfeng Zheng ◽  
Leigh C. Murphy

Cell cycle progression is tightly controlled by several kinase families including Cyclin-Dependent Kinases, Polo-Like Kinases, and Aurora Kinases. A large amount of data show that steroid hormone receptors and various components of the cell cycle, including cell cycle regulated kinases, interact, and this often results in altered transcriptional activity of the receptor. Furthermore, steroid hormones, through their receptors, can also regulate the transcriptional expression of genes that are required for cell cycle regulation. However, emerging data suggest that steroid hormone receptors may have roles in cell cycle progression independent of their transcriptional activity. The following is a review of how steroid receptors and their coregulators can regulate or be regulated by the cell cycle machinery, with a particular focus on roles independent of transcription in G2/M.


2017 ◽  
Author(s):  
Shixuan Liu ◽  
Miriam B. Ginzberg ◽  
Nish Patel ◽  
Marc Hild ◽  
Bosco Leung ◽  
...  

AbstractAnimal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity.One-sentence summaryThe p38 MAP kinase pathway coordinates cell growth and cell cycle progression by lengthening G1 in small cells, allowing them more time to grow before their next division.


1995 ◽  
Vol 311 (2) ◽  
pp. 549-554 ◽  
Author(s):  
M Wick ◽  
R Härönen ◽  
D Mumberg ◽  
C Bürger ◽  
B R Olsen ◽  
...  

The gene encoding tissue inhibitor of metalloproteinases-3 (TIMP-3) is regulated during development, mitogenic stimulation and normal cell cycle progression. The TIMP-3 gene is structurally altered or deregulated in certain diseases of the eye and in tumour cells. A detailed knowledge of the TIMP-3 gene and its regulatory elements is therefore of paramount importance to understand its role in development, cell cycle progression and disease. In this study, we present the complete structure of the human TIMP-3 gene. We show that TIMP-3 is a TATA-less gene, which initiates transcription at one major site, is composed of five exons and four introns spanning a region of approximately 30 kb, and gives rise to three distinct mRNAs, presumably due to the usage of alternative polyadenylation signals. Using somatic cell hybrids the TIMP-3 locus was mapped to chromosomal location 22q13.1 We also show that the TIMP-3 5′ flanking region is sufficient to confer both high basal level expression in growing cells and cell cycle regulation in serum-stimulated cells. While the first 112 bases of the promoter, which harbour multiple Sp1 sites, were found to suffice for high basal level activity, the adjacent region spanning positions -463 and -112 was found to be a major determinant of serum inducibility. These results provide an important basis for further investigations addressing the role of TIMP-3 in physiological processes and pathological conditions.


Stroke ◽  
2014 ◽  
Vol 45 (suppl_1) ◽  
Author(s):  
Umadevi V Wesley ◽  
Daniel Tremmel ◽  
Robert Dempsey

Introduction: The molecular mechanisms of cerebral ischemia damage and protection are not completely understood, but a number of reports implicate the contribution of lipid metabolism and cell-cycle regulating proteins in stroke out come. We have previously shown that tricyclodecan-9-yl-xanthogenate (D609) resulted in increased ceramide levels after transient middle cerebral artery occlusion (tMCAO) in spontaneously hypertensive rat (SHR). We hypothesized that D609 induced cell cycle arrest probably by inhibiting sphingomyelin synthase (SMS). In this study, we examined the direct effects of SMS on cell cycle progression and proliferation of neuroblast cells. Methods: Ischemia was induced by middle cerebral artery occlusion (MCAO) and reperfusion. Expression levels were measured by western blot analysis, RT-PCR, and Immunofluorescence staining. SMS1 and 2 expressions were silenced by stable transfection with SMS1/2-targeted shRNA. Cell cycle analysis was performed using Flow cytometry. Data were analyzed using MODFIT cell cycle analysis program. Cell proliferation rate was measured by MTT assay. Results: We have identified that the expression of SMS1is significantly up-regulated in the ischemic hemisphere following MCAO. Neuro-2a cells transfected with SMS specific ShRNA acquired more neuronal like phenotype and exhibited decreased proliferation rate. Also, silencing of both SMS1 and 2 induced cell-cycle arrest as shown by significantly increased percentage of cells in G0/G1 and decreased proportion of cells in S-phase as compared to control cells. This was accompanied by up-regulation of cyclin-dependent kinase (Cdk) inhibitors p21 and decreased levels of phophorylated AKT levels. Furthermore, loss of SMS inhibited the migratory potential of Neuro 2a cells. Summary: Up-regulation of SMS under ischemic/reperfusion conditions suggests that this enzyme potentially contributes to cell cycle regulation and may contribute to maintaining neuronal cell population. Further studies may open up a new direction for identifying the molecular mechanisms of cell cycle regulation and protection following ischemic stroke


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 397
Author(s):  
Cheuk Yiu Tenny Chung ◽  
Paulisally Hau Yi Lo ◽  
Kenneth Ka Ho Lee

BRISC and BRCA1-A complex member 2 (Babam2) plays an essential role in promoting cell cycle progression and preventing cellular senescence. Babam2-deficient fibroblasts show proliferation defect and premature senescence compared with their wild-type (WT) counterpart. Pluripotent mouse embryonic stem cells (mESCs) are known to have unlimited cell proliferation and self-renewal capability without entering cellular senescence. Therefore, studying the role of Babam2 in ESCs would enable us to understand the mechanism of Babam2 in cellular aging, cell cycle regulation, and pluripotency in ESCs. For this study, we generated Babam2 knockout (Babam2−/−) mESCs to investigate the function of Babam2 in mESCs. We demonstrated that the loss of Babam2 in mESCs leads to abnormal G1 phase retention in response to DNA damage induced by gamma irradiation or doxorubicin treatments. Key cell cycle regulators, CDC25A and CDK2, were found to be degraded in Babam2−/− mESCs following gamma irradiation. In addition, Babam2−/− mESCs expressed p53 strongly and significantly longer than in control mESCs, where p53 inhibited Nanog expression and G1/S cell cycle progression. The combined effects significantly reduced developmental pluripotency in Babam2−/− mESCs. In summary, Babam2 maintains cell cycle regulation and pluripotency in mESCs in response to induced DNA damage.


Sign in / Sign up

Export Citation Format

Share Document