scholarly journals A New Technique and Device for Controlled and Continuous Drug Delivery into the Brain – A Proof of Concept Study

2019 ◽  
Author(s):  
U.R. Anoop ◽  
Kavita Verma

AbstractBackgroundDrug delivery into the brain has been a challenge for the past 100 years because of the blood brain barrier. The existing non-invasive techniques cannot provide controlled and continuous drug delivery into the brain and the invasive techniques make the brain prone to infection from external agents. Hence a new technique which can provide controlled and continuous drug delivery without the need for any surgical intervention in the brain holds immense potential.ObjectiveThe objective of this study is to deliver drugs into the brain using a novel oral and maxillofacial technique and device.MethodDrug delivery into the brain from the oral and maxillofacial region was tested using a novel technique and device in an in vivo rabbit model and an ex vivo goat head model. A control animal and an experimental animal were used in each study. Drugs which do not cross the blood brain barrier normally were tested. Dopamine was delivered in vivo from the maxillo-facial region. Anti-glial fibrillary acidic protein antibody was delivered ex vivo from the oral region. Samples were collected from different sites including the brain and the optic nerve.ResultsThe in vivo model showed a significant increase of dopamine at the pons (51.89%), midbrain (27%), medulla (48.5%) and cortex (72.637%). On including samples from other regions in the t-test, the increase was not statistically significant (p=0.538), suggestive of a central feedback mechanism for brain and peripheral dopamine. A decrease in plasma dopamine during drug delivery further supported a central control for dopamine. In the ex vivo model, a statistically significant (p=0.047) delivery of antibodies occurred at multiple sites including pons (86.7%), cortex (256.5%), and the optic nerve (128.8%).ConclusionThis technique and device can deliver drugs into the brain without detectable increase in systemic circulation. Therefore it may be used for delivering drugs in Parkinson’s disease, Alzheimer’s disease, Pain management, Brain tumors especially pontine tumors, infections like neuro-AIDS, Basal meningitis etc. Retinal drug delivery may also be possible.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1598
Author(s):  
Sandra Isabel Aguiar ◽  
Joana N. R. Dias ◽  
Ana Santos André ◽  
Marta Lisete Silva ◽  
Diana Martins ◽  
...  

A major bottleneck in the successful development of central nervous system (CNS) drugs is the discovery and design of molecules that can cross the blood-brain barrier (BBB). Nano-delivery strategies are a promising approach that take advantage of natural portals of entry into the brain such as monoclonal antibodies (mAbs) targeting endogenous BBB receptors. However, the main selected mAbs rely on targeting broadly expressed receptors, such as the transferrin and insulin receptors, and in selection processes that do not fully mimic the native receptor conformation, leading to mistargeting and a low fraction of the administered dose effectively reaching the brain. Thus, there is an urgent need to identify new BBB receptors and explore novel antibody selection approaches that can allow a more selective delivery into the brain. Considering that in vitro models fail to completely mimic brain structure complexity, we explored an in vivo cell immunization approach to construct a rabbit derived single-domain antibody (sdAb) library towards BBB endothelial cell receptors. The sdAb antibody library was used in an in vivo phage display screening as a functional selection of novel BBB targeting antibodies. Following three rounds of selections, next generation sequencing analysis, in vitro brain endothelial barrier (BEB) model screenings and in vivo biodistribution studies, five potential sdAbs were identified, three of which reaching >0.6% ID/g in the brain. To validate the brain drug delivery proof-of-concept, the most promising sdAb, namely RG3, was conjugated at the surface of liposomes encapsulated with a model drug, the pan-histone deacetylase inhibitor panobinostat (PAN). The translocation efficiency and activity of the conjugate liposome was determined in a dual functional in vitro BEB-glioblastoma model. The RG3 conjugated PAN liposomes enabled an efficient BEB translocation and presented a potent antitumoral activity against LN229 glioblastoma cells without influencing BEB integrity. In conclusion, our in vivo screening approach allowed the selection of highly specific nano-antibody scaffolds with promising properties for brain targeting and drug delivery.


2020 ◽  
Vol 26 (37) ◽  
pp. 4721-4737 ◽  
Author(s):  
Bhumika Kumar ◽  
Mukesh Pandey ◽  
Faheem H. Pottoo ◽  
Faizana Fayaz ◽  
Anjali Sharma ◽  
...  

Parkinson’s disease is one of the most severe progressive neurodegenerative disorders, having a mortifying effect on the health of millions of people around the globe. The neural cells producing dopamine in the substantia nigra of the brain die out. This leads to symptoms like hypokinesia, rigidity, bradykinesia, and rest tremor. Parkinsonism cannot be cured, but the symptoms can be reduced with the intervention of medicinal drugs, surgical treatments, and physical therapies. Delivering drugs to the brain for treating Parkinson’s disease is very challenging. The blood-brain barrier acts as a highly selective semi-permeable barrier, which refrains the drug from reaching the brain. Conventional drug delivery systems used for Parkinson’s disease do not readily cross the blood barrier and further lead to several side-effects. Recent advancements in drug delivery technologies have facilitated drug delivery to the brain without flooding the bloodstream and by directly targeting the neurons. In the era of Nanotherapeutics, liposomes are an efficient drug delivery option for brain targeting. Liposomes facilitate the passage of drugs across the blood-brain barrier, enhances the efficacy of the drugs, and minimize the side effects related to it. The review aims at providing a broad updated view of the liposomes, which can be used for targeting Parkinson’s disease.


2020 ◽  
Vol 26 (13) ◽  
pp. 1448-1465 ◽  
Author(s):  
Jozef Hanes ◽  
Eva Dobakova ◽  
Petra Majerova

Tauopathies are neurodegenerative disorders characterized by the deposition of abnormal tau protein in the brain. The application of potentially effective therapeutics for their successful treatment is hampered by the presence of a naturally occurring brain protection layer called the blood-brain barrier (BBB). BBB represents one of the biggest challenges in the development of therapeutics for central nervous system (CNS) disorders, where sufficient BBB penetration is inevitable. BBB is a heavily restricting barrier regulating the movement of molecules, ions, and cells between the blood and the CNS to secure proper neuronal function and protect the CNS from dangerous substances and processes. Yet, these natural functions possessed by BBB represent a great hurdle for brain drug delivery. This review is concentrated on summarizing the available methods and approaches for effective therapeutics’ delivery through the BBB to treat neurodegenerative disorders with a focus on tauopathies. It describes the traditional approaches but also new nanotechnology strategies emerging with advanced medical techniques. Their limitations and benefits are discussed.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1833
Author(s):  
Shannon Morgan McCabe ◽  
Ningning Zhao

Manganese (Mn) is a trace nutrient necessary for life but becomes neurotoxic at high concentrations in the brain. The brain is a “privileged” organ that is separated from systemic blood circulation mainly by two barriers. Endothelial cells within the brain form tight junctions and act as the blood–brain barrier (BBB), which physically separates circulating blood from the brain parenchyma. Between the blood and the cerebrospinal fluid (CSF) is the choroid plexus (CP), which is a tissue that acts as the blood–CSF barrier (BCB). Pharmaceuticals, proteins, and metals in the systemic circulation are unable to reach the brain and spinal cord unless transported through either of the two brain barriers. The BBB and the BCB consist of tightly connected cells that fulfill the critical role of neuroprotection and control the exchange of materials between the brain environment and blood circulation. Many recent publications provide insights into Mn transport in vivo or in cell models. In this review, we will focus on the current research regarding Mn metabolism in the brain and discuss the potential roles of the BBB and BCB in maintaining brain Mn homeostasis.


2021 ◽  
Vol 23 (Supplement_2) ◽  
pp. ii28-ii28
Author(s):  
S Weil ◽  
E Jung ◽  
D Domínguez Azorín ◽  
J Higgins ◽  
J Reckless ◽  
...  

Abstract BACKGROUND Glioblastomas are notoriously therapy resistant tumors. As opposed to other tumor entities, no major advances in therapeutic success have been made in the past decades. This has been calling for a deeper biological understanding of the tumor, its growth and resistance patterns. We have been using a xenograft glioma model, where human glioblastoma cells are implanted under chronic cranial windows and studied longitudinally over many weeks and months using multi photon laser scanning microscopy (MPLSM). To test the effect of (new) drugs, a stable and direct delivery system avoiding the blood-brain-barrier has come into our interest. MATERIAL AND METHODS We implanted cranial windows and fluorescently labeled human glioblastoma stem-like cells into NMRI nude mice to follow up on the tumor development in our MPLSM model. After tumor establishment, an Alzet® micropump was implanted to directly deliver agents via a catheter system continuously over 28 days directly under the cranial window onto the brain surface. Using the MPLSM technique, the continuous delivery and infusion of drugs onto the brain and into the tumor was measured over many weeks in detail using MPLSM. RESULTS The establishment of the combined methods allowed reliable concurrent drug delivery over 28 days bypassing the blood-brain-barrier. Individual regions and tumor cells could be measured and followed up before, and after the beginning of the treatment, as well as after the end of the pump activity. Fluorescently labelled drugs were detectable in the MPLSM and its distribution into the brain parenchyma could be quantified. After the end of the micropump activity, further MPLSM measurements offer the possibility to observe long term effects of the applied drug on the tumor. CONCLUSION The combination of tumor observation in the MPSLM and concurrent continuous drug delivery is a feasible and reliable method for the investigation of (novel) anti-tumor agents, especially drugs that are not blood-brain-barrier penetrant. Morphological or even functional changes of individual tumor cells can be measured under and after treatment. These techniques can be used to test new drugs targeting the tumor, its tumor microtubes and tumor cells networks, and measure the effects longitudinally.


2021 ◽  
Vol 27 ◽  
Author(s):  
Dhara Lakdawala ◽  
Md Abdur Rashid ◽  
Farhan Jalees Ahmad

: Drug delivery to the brain has remained a significant challenge in treating neurodegenerative disorders such as Alzheimer's disease due to the presence of the blood-brain barrier, which primarily obstructs the access of drugs and biomolecules into the brain. Several methods to overcome the blood-brain barrier have been employed, such as chemical disruption, surgical intervention, focused ultrasound, intranasal delivery and using nanocarriers. Nanocarrier systems remain the method of choice and have shown promising results over the past decade to achieve better drug targeting. Polymeric nanocarriers and lipidic nanoparticles act as a carrier system providing better encapsulation of drugs, site-specific delivery, increased bioavailability and sustained release of drugs. The surface modifications and functionalization of these nanocarrier systems have greatly facilitated targeted drug delivery. The safety and efficacy of these nanocarrier systems have been ascertained by several in vitro and in vivo models. In the present review, we have elaborated on recent developments of nanoparticles as a drug delivery system for Alzheimer's disease, explicitly focusing on polymeric and lipidic nanoparticles.


2006 ◽  
Vol 6 (9) ◽  
pp. 2712-2735 ◽  
Author(s):  
J. M. Koziara ◽  
P. R. Lockman ◽  
D. D. Allen ◽  
R. J. Mumper

The present report encompasses a thorough review of drug delivery to the brain with a particular focus on using drug carriers such as liposomes and nanoparticles. Challenges in brain drug delivery arise from the presence of one of the strictest barriers in vivo—the blood-brain barrier (BBB). This barrier exists at the level of endothelial cells of brain vasculature and its role is to maintain brain homeostasis. To better understand the principles of brain drug delivery, relevant knowledge of the blood-brain barrier anatomy and physiology is briefly reviewed. Several approaches to overcome the BBB have been reviewed including the use of carrier systems. In addition, strategies to enhance brain drug delivery by specific brain targeting are discussed.


2020 ◽  
Vol 13 (10) ◽  
pp. 279
Author(s):  
Dina Sikpa ◽  
Lisa Whittingstall ◽  
Martin Savard ◽  
Réjean Lebel ◽  
Jérôme Côté ◽  
...  

The blood–brain barrier (BBB) is a major obstacle to the development of effective diagnostics and therapeutics for brain cancers and other central nervous system diseases. Peptide agonist analogs of kinin B1 and B2 receptors, acting as BBB permeabilizers, have been utilized to overcome this barrier. The purpose of the study was to provide new insights for the potential utility of kinin analogs as brain drug delivery adjuvants. In vivo imaging studies were conducted in various animal models (primary/secondary brain cancers, late radiation-induced brain injury) to quantify BBB permeability in response to kinin agonist administrations. Results showed that kinin B1 (B1R) and B2 receptors (B2R) agonists increase the BBB penetration of chemotherapeutic doxorubicin to glioma sites, with additive effects when applied in combination. B2R agonist also enabled extravasation of high-molecular-weight fluorescent dextrans (155 kDa and 2 MDa) in brains of normal mice. Moreover, a systemic single dose of B2R agonist did not increase the incidence of metastatic brain tumors originating from circulating breast cancer cells. Lastly, B2R agonist promoted the selective delivery of co-injected diagnostic MRI agent Magnevist in irradiated brain areas, depicting increased vascular B2R expression. Altogether, our findings suggest additional evidence for using kinin analogs to facilitate specific access of drugs to the brain.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi82-vi82 ◽  
Author(s):  
Ellina Schulz ◽  
Almuth F Kessler ◽  
Ellaine Salvador ◽  
Dominik Domröse ◽  
Malgorzata Burek ◽  
...  

Abstract OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.


Sign in / Sign up

Export Citation Format

Share Document