scholarly journals PDK1 has a pleiotropic PINOID-independent role in Arabidopsis development

2019 ◽  
Author(s):  
Yao Xiao ◽  
Remko Offringa

AbstractThe 3-Phosphoinositide-Dependent Protein Kinase 1 (PDK1) is a conserved and important master regulator of AGC kinases in eukaryotic organisms. pdk1 loss-of-function causes a lethal phenotype in animals and yeast. In contrast, only very mild phenotypic defects have been reported for the pdk1 loss-of-function mutant of the model plant Arabidopsis thaliana (Arabidopsis). The Arabidopsis genome contains two PDK1 genes, hereafter called PDK1 and PDK2. Here we show that the previously reported Arabidopsis pdk1 T-DNA insertion alleles are not true loss-of-function mutants. By using CRISPR/Cas9 technology, we created true loss-of-function pdk1 alleles, and pdk1 pdk2 double mutants carrying these alleles showed multiple growth and development defect, including fused cotyledons, a short primary root, dwarf stature, late flowering, and reduced seed production caused by defects in male fertility. Surprisingly, pdk1 pdk2 mutants did not phenocopy pid mutants, and together with the observations that PDK1 overexpression does not phenocopy the effect of PID overexpression, and that pdk1 pdk2 loss-of-function does not change PID subcellular localization, we conclude that PDK1 is not essential for PID membrane localization or functionality in planta. Nonetheless, most pdk1 pdk2 phenotypes could be correlated with impaired auxin transport. PDK1 is highly expressed in vascular tissues and YFP:PDK1 is relatively abundant at the basal/rootward side of root stele cells, where it colocalizes with PIN auxin efflux carriers, and the AGC1 kinases PAX and D6PK/D6PKLs. Our genetic and phenotypic analysis suggests that PDK1 is likely to control auxin transport as master regulator of these AGC1 kinases in Arabidopsis.

2021 ◽  
Author(s):  
Wei Kong ◽  
Shutang Tan ◽  
Qing Zhao ◽  
De-Li Lin ◽  
Zhi-Hong Xu ◽  
...  

Abstract The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.2 in Arabidopsis thaliana. Notably, the severe growth attenuation of pdk1.1 pdk1.2 was rescued by sop21 (suppressor of pdk1.1 pdk1.2), which harbours a loss-of-function mutation in PELOTA1 (PEL1). PEL1 is a homologue of mammalian PELOTA and yeast (Saccharomyces cerevisiae) DOM34p, which each form a heterodimeric complex with the GTPase HBS1 (HSP70 SUBFAMILY B SUPPRESSOR1, also called SUPERKILLER PROTEIN7, SKI7), a protein that is responsible for ribosomal rescue and thereby assures the quality and fidelity of mRNA molecules during translation. Genetic analysis further revealed that a dysfunctional PEL1-HBS1 complex failed to degrade the T-DNA-disrupted PDK1 transcripts, which were truncated but functional, and thus rescued the growth and developmental defects of pdk1.1 pdk1.2. Our studies demonstrated the functionality of a homologous PELOTA-HBS1 complex and identified its essential regulatory role in plants, providing insights into the mechanism of mRNA quality control.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jutta Keicher ◽  
Nina Jaspert ◽  
Katrin Weckermann ◽  
Claudia Möller ◽  
Christian Throm ◽  
...  

Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which – epsilon – is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.


2019 ◽  
Author(s):  
Shutang Tan ◽  
Xixi Zhang ◽  
Wei Kong ◽  
Xiao-Li Yang ◽  
Gergely Molnár ◽  
...  

AbstractDirectional intercellular transport of the phytohormone auxin mediated by PIN FORMED (PIN) efflux carriers plays essential roles in both coordinating patterning processes and integrating multiple external cues by rapidly redirecting auxin fluxes. Multilevel regulations of PIN activity under internal and external cues are complicated; however, the underlying molecular mechanism remains elusive. Here we demonstrate that 3’-Phosphoinositide-Dependent Protein Kinase1 (PDK1), which is conserved in plants and mammals, functions as a molecular hub integrating the upstream lipid signalling and the downstream substrate activity through phosphorylation. Genetic analysis uncovers that loss-of-function Arabidopsis mutant pdk1.1 pdk1.2 exhibits a plethora of abnormalities in organogenesis and growth, due to the defective PIN-dependent auxin transport. Further cellular and biochemical analyses reveal that PDK1 phosphorylates D6 Protein Kinase to facilitate its activity towards PIN proteins. Our studies establish a lipid-dependent phosphorylation cascade connecting membrane composition-based cellular signalling with plant growth and patterning by regulating morphogenetic auxin fluxes.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


2021 ◽  
Vol 22 (4) ◽  
pp. 1596
Author(s):  
Elsa Ronzier ◽  
Claire Corratgé-Faillie ◽  
Frédéric Sanchez ◽  
Christian Brière ◽  
Tou Cheu Xiong

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


Author(s):  
Cassie Tyson

Cartilage tumors are the most common and terminal primary neoplasms in bone. Physiologically, bones formed through endochondral ossification are regulated by the Hedgehog pathway and Parathyroid hormone-like hormone feedback loop. The upregulation of the infamous Hedgehog pathway has been demonstrated in several non-cartilaginous neoplasms. Recently, frequent mutational events of isocitrate dehydrogenase1 (IDH1) were identified in cartilage tumors. In other neoplasms, IDH mutations produces an oncometabolite that can promote HIF1a activation, contributing to tumorigenesis. Currently, the role of IDH1 mutations in cartilage tumors remain unknown. Investigating the physiological aspect of IDH1proves useful in identifying novel therapeutic targets for cartilage tumors. IDH1 deficient and wild-type littermates, were harvested for forelimbs and hindlimbs at various developmental stages for phenotypic analysis via hematoxylin and eosin staining. Histological analysis demonstrated IDH1 homozygous deficient mice at embryonic stages exhibited dwarfism and an elongated layer of hypertrophic chondrocytes. This was verified via immunohistochemistry Type 10 Collagen staining and Quantitative PCR (qPCR) using the chondrocyte terminal differentiation marker Col10a1. Whole skeletons of IDH1 deficient mice were subjected to skeletal double staining which demonstrated delayed mineralization of underdeveloped IDH1 deficient mice contrasted with wild-type littermates. qPCR was performed to examine the status of chondrocyte differentiation through the Hedgehog pathway in cultured primarymouse growth plate chondrocytes. Interestingly, IDH1 deficient non-neoplastic cells revealed significant upregulation of Hedgehog target molecules in IDH1 deficient chondrocytes. As a result, the loss-offunction of IDH1 was identified as a potential impairment of chondrocyte differentiation and a factor towards chondrocyte tumorgenisis.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 711-721 ◽  
Author(s):  
Q. Tian ◽  
J.W. Reed

The plant hormone auxin controls many aspects of development and acts in part by inducing expression of various genes. Arabidopsis thaliana semidominant shy2 (short hypocotyl) mutations cause leaf formation in dark-grown plants, suggesting that SHY2 has an important role in regulating development. Here we show that the SHY2 gene encodes IAA3, a previously known member of the Aux/IAA family of auxin-induced genes. Dominant shy2 mutations cause amino acid changes in domain II, conserved among all members of this family. We isolated loss-of-function shy2 alleles including a putative null mutation. Gain-of-function and loss-of-function shy2 mutations affect auxin-dependent root growth, lateral root formation, and timing of gravitropism, indicating that SHY2/IAA3 regulates multiple auxin responses in roots. The phenotypes suggest that SHY2/IAA3 may activate some auxin responses and repress others. Models invoking tissue-specificity, feedback regulation, or control of auxin transport may explain these results.


2018 ◽  
Vol 115 (26) ◽  
pp. 6864-6869 ◽  
Author(s):  
Mohamad Abbas ◽  
Jorge Hernández-García ◽  
Stephan Pollmann ◽  
Sophia L. Samodelov ◽  
Martina Kolb ◽  
...  

Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants inArabidopsis IAA CARBOXYL METHYLTRANSFERASE1(IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase inPINgene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in theiamt1mutant. Gravitropic reorientation in theiamt1mutant could be restored with either endodermis-specific expression ofIAMT1or partial inhibition of polar auxin transport, which also results in normalPINgene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses.


2021 ◽  
Author(s):  
Han Hong Wei ◽  
Shu Tao Yu ◽  
Zhi Wei Wang ◽  
Zhen Yang ◽  
Guo Sheng Song ◽  
...  

Abstract In contrast to its normal-oleic counterpart, high-oleic peanut has better keeping quality and multiple health benefits. Breeding high-oleic peanut through conventional means is a tedious process generally requiring several years. Genome editing may shorten the duration. In this study, node injection method was used to transform normal-oleic Huayu 23, a popular peanut cultivar having loss-of-function FAD2A, with CRISPR/Cas9 construct targeting FAD2B, and two peanut mutants with over 80% oleic acid and 442A insertion in FAD2B were obtained. As a genotype-independent, simple and easy method for peanut genetic transformation, node injection has great potential in factional analysis of genes and in peanut varietal improvement.


Sign in / Sign up

Export Citation Format

Share Document