scholarly journals A memory of RPS25 loss drives resistance phenotypes

2019 ◽  
Author(s):  
Alex G. Johnson ◽  
Ryan A. Flynn ◽  
Christopher P. Lapointe ◽  
Yaw Shin Ooi ◽  
Michael L. Zhao ◽  
...  

ABSTRACTIn order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Many cell types can nonetheless withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. However, the direct and indirect consequences from sustained alterations in ribosomal protein levels are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation.

2020 ◽  
Author(s):  
Alex G Johnson ◽  
Ryan A Flynn ◽  
Christopher P Lapointe ◽  
Yaw Shin Ooi ◽  
Michael L Zhao ◽  
...  

Abstract In order to maintain cellular protein homeostasis, ribosomes are safeguarded against dysregulation by myriad processes. Remarkably, many cell types can withstand genetic lesions of certain ribosomal protein genes, some of which are linked to diverse cellular phenotypes and human disease. Yet the direct and indirect consequences from these lesions are poorly understood. To address this knowledge gap, we studied in vitro and cellular consequences that follow genetic knockout of the ribosomal proteins RPS25 or RACK1 in a human cell line, as both proteins are implicated in direct translational control. Prompted by the unexpected detection of an off-target ribosome alteration in the RPS25 knockout, we closely interrogated cellular phenotypes. We found that multiple RPS25 knockout clones display viral- and toxin-resistance phenotypes that cannot be rescued by functional cDNA expression, suggesting that RPS25 loss elicits a cell state transition. We characterized this state and found that it underlies pleiotropic phenotypes and has a common rewiring of gene expression. Rescuing RPS25 expression by genomic locus repair failed to correct for the phenotypic and expression hysteresis. Our findings illustrate how the elasticity of cells to a ribosome perturbation can drive specific phenotypic outcomes that are indirectly linked to translation and suggests caution in the interpretation of ribosomal protein gene mutation data.


1995 ◽  
Vol 73 (11-12) ◽  
pp. 969-977 ◽  
Author(s):  
Francesco Amaldi ◽  
Olga Camacho-Vanegas ◽  
Francesco Cecconi ◽  
Fabrizio Loreni ◽  
Beatrice Cardinali ◽  
...  

In Xenopus laevis, as well as in other vertebrates, ribosomal proteins (r-proteins) are coded by a class of genes that share some organizational and structural features. One of these, also common to genes coding for other proteins involved in the translation apparatus synthesis and function, is the presence within their introns of sequences coding for small nucleolar RNAs. Another feature is the presence of common structures, mainly in the regions surrounding the 5′ ends, involved in their coregulated expression. This is attained at various regulatory levels: transcriptional, posttranscriptional, and translational. Particular attention is given here to regulation at the translational level, which has been studied during Xenopus oogenesis and embryogenesis and also during nutritional changes of Xenopus cultured cells. This regulation, which responds to the cellular need for new ribosomes, operates by changing the fraction of rp-mRNA (ribosomal protein mRNA) engaged on polysomes. A typical 5′ untranslated region characterizing all vertebrate rp-mRNAs analyzed to date is responsible for this translational behaviour: it is always short and starts with an 8–12 nucleotide polypyrimidine tract. This region binds in vitro some proteins that can represent putative trans-acting factors for this translational regulation.Key words: ribosomal proteins, snoRNA, translational regulation, Xenopus laevis.


2016 ◽  
Vol 198 (13) ◽  
pp. 1857-1867 ◽  
Author(s):  
Rim Maouche ◽  
Hector L. Burgos ◽  
Laetitia My ◽  
Julie P. Viala ◽  
Richard L. Gourse ◽  
...  

ABSTRACTMultiple essential small GTPases are involved in the assembly of the ribosome or in the control of its activity. Among them, ObgE (CgtA) has been shown recently to act as a ribosome antiassociation factor that binds to ppGpp, a regulator whose best-known target is RNA polymerase. The present study was aimed at elucidating the expression ofobgEinEscherichia coli. We show thatobgEis cotranscribed with ribosomal protein genesrplUandrpmAand with a gene of unknown function,yhbE. We show here that about 75% of the transcripts terminate beforeobgE, because there is a transcriptional terminator betweenrpmAandyhbE. As expected for ribosomal protein operons, expression was highest during exponential growth, decreased during entry into stationary phase, and became almost undetectable thereafter. Expression of the operon was derepressed in mutants lacking ppGpp or DksA. However, regulation by these factors appears to occur post-transcription initiation, since no effects of ppGpp and DksA onrplUpromoter activity were observedin vitro.IMPORTANCEThe conserved and essential ObgE GTPase binds to the ribosome and affects its assembly. ObgE has also been reported to impact chromosome segregation, cell division, resistance to DNA damage, and, perhaps most interestingly, persister formation and antibiotic tolerance. However, it is unclear whether these effects are related to its role in ribosome formation. Despite its importance, no studies on ObgE expression have been reported. We demonstrate here thatobgEis expressed from an operon encoding two ribosomal proteins, that the operon's expression varies with the growth phase, and that it is dependent on the transcription regulators ppGpp and DksA. Our results thus demonstrate thatobgEexpression is coupled to ribosomal gene expression.


1983 ◽  
Vol 3 (3) ◽  
pp. 457-465
Author(s):  
C H Kim ◽  
J R Warner

In Saccharomyces cerevisiae the synthesis of ribosomal proteins declines temporarily after a culture has been subjected to a mild temperature shock, i.e., a shift from 23 to 36 degrees C, each of which support growth. Using cloned genes for several S. cerevisiae ribosomal proteins, we found that the changes in the synthesis of ribosomal proteins parallel the changes in the concentration of mRNA of each. The disappearance and reappearance of the mRNA is due to a brief but severe inhibition of the transcription of each of the ribosomal protein genes, although the total transcription of mRNA in the cells is relatively unaffected by the temperature shock. The precisely coordinated response of these genes, which are scattered throughout the genome, suggests that either they or the enzyme which transcribes them has unique properties. In certain S. cerevisiae mutants, the synthesis of ribosomal proteins never recovers from a temperature shift. Yet both the decline and the resumption of transcription of these genes during the 30 min after the temperature shift are indistinguishable from those in wild-type cells. The failure of the mutant cells to grow at the restrictive temperature appears to be due to their inability to process the RNA transcribed from genes which have introns (Rosbash et al., Cell 24:679-686, 1981), a large proportion of which appear to be ribosomal protein genes.


Genetics ◽  
1992 ◽  
Vol 132 (2) ◽  
pp. 375-386 ◽  
Author(s):  
A Vincent ◽  
S W Liebman

Abstract The accurate synthesis of proteins is crucial to the existence of a cell. In yeast, several genes that affect the fidelity of translation have been identified (e.g., omnipotent suppressors, antisuppressors and allosuppressors). We have found that the dominant omnipotent suppressor SUP46 encodes the yeast ribosomal protein S13. S13 is encoded by two similar genes, but only the sup46 copy of the gene is able to fully complement the recessive phenotypes of SUP46 mutations. Both copies of the S13 genes contain introns. Unlike the introns of other duplicated ribosomal protein genes which are highly diverged, the duplicated S13 genes have two nearly identical DNA sequences of 25 and 31 bp in length within their introns. The SUP46 protein has significant homology to the S4 ribosomal protein in prokaryotic-type ribosomes. S4 is encoded by one of the ram (ribosomal ambiguity) genes in Escherichia coli which are the functional equivalent of omnipotent suppressors in yeast. Thus, SUP46 and S4 demonstrate functional as well as sequence conservation between prokaryotic and eukaryotic ribosomal proteins. SUP46 and S4 are most similar in their central amino acid sequences. Interestingly, the alterations resulting from the SUP46 mutations and the segment of the S4 protein involved in binding to the 16S rRNA are within this most conserved region.


2002 ◽  
Vol 46 (9) ◽  
pp. 2956-2962 ◽  
Author(s):  
Catherine Clark ◽  
Bülent Bozdogan ◽  
Mihaela Peric ◽  
Bonifacio Dewasse ◽  
Michael R. Jacobs ◽  
...  

ABSTRACT Abilities of amoxicillin-clavulanate, cefpodoxime, cefprozil, azithromycin, and clarithromycin to select resistant mutants of Haemophilus influenzae were tested by multistep and single-step methodologies. For multistep studies, 10 random strains were tested: 5 of these were β-lactamase positive. After 50 daily subcultures in amoxicillin-clavulanate, MICs did not increase more than fourfold. However, cefprozil MICs increased eightfold for one strain. Clarithromycin and azithromycin gave a >4-fold increase in 8 and 10 strains after 14 to 46 and 20 to 50 days, respectively. Mutants selected by clarithromycin and azithromycin were associated with mutations in 23S rRNA and ribosomal proteins L4 and L22. Three mutants selected by clarithromycin or azithromycin had alterations in ribosomal protein L4, while five had alterations in ribosomal protein L22. Two mutants selected by azithromycin had mutations in the gene encoding 23S rRNA: one at position 2058 and the other at position 2059 (Escherichia coli numbering), with replacement of A by G. One clone selected by clarithromycin became hypersusceptible to macrolides. In single-step studies azithromycin and clarithromycin had the highest mutation rates, while amoxicillin-clavulanate had the lowest. All resistant clones were identical to parents as observed by pulsed-field gel electrophoresis. The MICs of azithromycin for azithromycin-resistant clones were 16 to >128 μg/ml, and those of clarithromycin for clarithromycin-resistant clones were 32 to >128 μg/ml in multistep studies. For strains selected by azithromycin, the MICs of clarithromycin were high and vice versa. After 50 daily subcultures in the presence of drugs, MICs of amoxicillin-clavulanate and cefpodoxime against H. influenzae did not rise more than fourfold, in contrast to cefprozil, azithromycin, and clarithromycin, whose MICs rose to variable degrees.


1978 ◽  
Vol 56 (6) ◽  
pp. 528-533 ◽  
Author(s):  
Stephen M. Boyle ◽  
Frederick Chu ◽  
Nathan Brot ◽  
Bruce H. Sells

The level of ppGpp and rates of synthesis of stable RNA, ribosomal protein, and the β and β′ subunits of RNA polymerase were measured following a nutritional shiftup in Escherichia coli strains, NF 929 (spoT+) and NF 930 (spoT'−). In the spoT+ strain, ppGpp levels decreased 50% within 2 min following shiftup, and the rates of synthesis of stable RNA, ribosomal proteins, and the β and β′ subunits of RNA polymerase increased with little or no lag. In contrast, in the spoT− strain, ppGpp levels transiently increased 40% during the first 6 min following shiftup. An inhibition in the rate of stable RNA synthesis and a delay in the increased synthesis of ribosomal proteins and β and β′ subunits occurred concurrently with the transient increase in ppGpp. In addition, the DNA-dependent synthesis in vitro of the β and β′ subunits of RNA polymerase was inhibited by physiological levels of ppGpp. Because of the timing and magnitude of the changes in ppGpp levels in the spoT− strain versus the timing when the new rates of stable RNA, ribosomal protein, and β and β′ subunits synthesis are reached, it is concluded that ppGpp is not the sole element regulating the expression of these genes.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1170-1170
Author(s):  
Alison M. Taylor ◽  
Jessica M. Humphries ◽  
Richard M. White ◽  
Ryan D. Murphey ◽  
Caroline E. Burns ◽  
...  

Abstract Abstract 1170 Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by red cell aplasia and craniofacial abnormalities. Ribosomal protein genes are often mutated in patients with this disease, but the mechanism of action is still being investigated. To elucidate the effect of mutations in ribosomal proteins, we are studying a zebrafish rps29 mutant with hematopoietic and endothelial defects. Hematopoietic stem cells (HSCs) in rps29-/- embryos are significantly decreased, as assayed by runx1 and cmyb expression. Although the aorta and posterior cardinal vein form in the mutant, intersomitic vessel formation is affected. To test whether decreased p53 levels can rescue these defects, we crossed fish with mutated p53 into the rps29 background. In rps29-/-;p53-/- embryos, the vascular and HSC phenotypes are rescued, demonstrating that p53 may be required for these effects of rps29 knockdown. We performed a microarray comparing rps29-/- embryos and their siblings to identify genes that are differentially expressed in the mutant. Using gene set enrichment analysis (GSEA), we determined that the list of genes up-regulated in the rps29 mutant is enriched for genes up-regulated by p53 in response to irradiation. Many of the genes identified have known roles in apoptosis and stress response. We have also identified genes whose expression correlates with the number of wildtype copies of rps29. Orthopedia homolog a (otpa), which is specifically expressed in forebrain and hindbrain tissues at 24 hours post fertilization (hpf), is decreased in heterozygous siblings and further decreased in homozygous siblings. In addition, p53 knockdown partially increases otpa levels in the mutant. These data support a model where p53 activation is one of the critical downstream mediators of rps29 knockdown in several tissues, but the mechanism of tissue specificity remains unclear. The otpa phenotype suggests that regulation of some genes is dependent on rps29 levels. The zebrafish rps29 mutant will be a useful model for understanding how a decrease in ribosomal protein levels can cause specific defects in hematopoietic and neural tissues. Disclosures: Zon: FATE, Inc.: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Stemgent: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees.


2000 ◽  
Vol 276 (15) ◽  
pp. 11552-11558 ◽  
Author(s):  
Janet Fawcett ◽  
Frederick G. Hamel ◽  
Robert G. Bennett ◽  
Zoltan Vajo ◽  
William C. Duckworth

In adult animals, the major effect of insulin on protein turnover is inhibition of protein degradation. Cellular protein degradation is under the control of multiple systems, including lysosomes, proteasomes, calpains, and giant protease. Insulin has been shown to alter proteasome activityin vitroandin vivo. We examined the inhibition of protein degradation by insulin and insulin analogues (LysB28,ProB29-insulin (LysPro), AspB10-insulin (B10), and GluB4,GlnB16,PheB17-insulin (EQF)) in H4, HepG2, and L6 cells. These effects were compared with receptor binding. Protein degradation was examined by release of trichloroacetic acid-soluble radioactivity from cells previously labeled with [3H]leucine. Short- and intermediate-lived proteins were examined. H4 cells bound insulin with an EC50of 4.6 × 10−9m. LysPro was similar. The affinity of B10 was increased 2-fold; that of EQF decreased 15-fold. Protein degradation inhibition in H4 cells was highly sensitive to insulin (EC50= 4.2 × 10−11and 1.6 × 10−10m, short- and intermediate-lived protein degradation, respectively) and analogues. Despite similar binding, LysPro was 11- to 18-fold more potent than insulin at inhibiting protein degradation. Conversely, although EQF showed lower binding to H4 cells than insulin, its action was similar. The relative binding potencies of analogues in HepG2 cells were similar to those in H4 cells. Examination of protein degradation showed insulin, LysPro, and B10 were equivalent while EQF was less potent. L6 cells showed no difference in the binding of the analogues compared with insulin, but their effect on protein degradation was similar to that seen in HepG2 cells except B10 inhibited intermediate-lived protein degradation better than insulin. These studies illustrate the complexities of cellular protein degradation and the effects of insulin. The effect of insulin and analogues on protein degradation vary significantly in different cell types and with different experimental conditions. The differences seen in the action of the analogues cannot be attributed to binding differences. Post-receptor mechanisms, including intracellular processing and degradation, must be considered.


2016 ◽  
Vol 113 (12) ◽  
pp. 3185-3190 ◽  
Author(s):  
Zhen-Ning Zhang ◽  
Beatriz C. Freitas ◽  
Hao Qian ◽  
Jacques Lux ◽  
Allan Acab ◽  
...  

Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays, as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here, we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders, such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs, yielding electrophysiologically active neurons within just 3 wk. Using this platform, we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus, this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.


Sign in / Sign up

Export Citation Format

Share Document