scholarly journals Bias in two-sample Mendelian randomization when using heritable covariable-adjusted summary associations

2019 ◽  
Author(s):  
Fernando Pires Hartwig ◽  
Kate Tilling ◽  
George Davey Smith ◽  
Deborah A Lawlor ◽  
Maria Carolina Borges

AbstractBackgroundTwo-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables.MethodsWe performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR.ResultsIn the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index.ConclusionsOur findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.Key messagesSummary genetic associations from large genome-wide associations studies (GWAS) have been increasingly used in two-sample Mendelian randomization (MR) analyses.Many GWAS adjust for heritable covariates in an attempt to estimate direct genetic effects on the trait of interest.In an extensive simulation study, we demonstrate that using covariable-adjusted summary associations may bias MR analyses.The bias largely depends on the underlying causal structure, specially the presence of unmeasured common causes between the covariable and the outcome.Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided.


Author(s):  
Fernando Pires Hartwig ◽  
Kate Tilling ◽  
George Davey Smith ◽  
Deborah A Lawlor ◽  
Maria Carolina Borges

Abstract Background Two-sample Mendelian randomization (MR) allows the use of freely accessible summary association results from genome-wide association studies (GWAS) to estimate causal effects of modifiable exposures on outcomes. Some GWAS adjust for heritable covariables in an attempt to estimate direct effects of genetic variants on the trait of interest. One, both or neither of the exposure GWAS and outcome GWAS may have been adjusted for covariables. Methods We performed a simulation study comprising different scenarios that could motivate covariable adjustment in a GWAS and analysed real data to assess the influence of using covariable-adjusted summary association results in two-sample MR. Results In the absence of residual confounding between exposure and covariable, between exposure and outcome, and between covariable and outcome, using covariable-adjusted summary associations for two-sample MR eliminated bias due to horizontal pleiotropy. However, covariable adjustment led to bias in the presence of residual confounding (especially between the covariable and the outcome), even in the absence of horizontal pleiotropy (when the genetic variants would be valid instruments without covariable adjustment). In an analysis using real data from the Genetic Investigation of ANthropometric Traits (GIANT) consortium and UK Biobank, the causal effect estimate of waist circumference on blood pressure changed direction upon adjustment of waist circumference for body mass index. Conclusions Our findings indicate that using covariable-adjusted summary associations in MR should generally be avoided. When that is not possible, careful consideration of the causal relationships underlying the data (including potentially unmeasured confounders) is required to direct sensitivity analyses and interpret results with appropriate caution.



2019 ◽  
Author(s):  
Tom G Richardson ◽  
Gibran Hemani ◽  
Tom R Gaunt ◽  
Caroline L Relton ◽  
George Davey Smith

AbstractBackgroundDeveloping insight into tissue-specific transcriptional mechanisms can help improve our understanding of how genetic variants exert their effects on complex traits and disease. By applying the principles of Mendelian randomization, we have undertaken a systematic analysis to evaluate transcriptome-wide associations between gene expression across 48 different tissue types and 395 complex traits.ResultsOverall, we identified 100,025 gene-trait associations based on conventional genome-wide corrections (P < 5 × 10−08) that also provided evidence of genetic colocalization. These results indicated that genetic variants which influence gene expression levels in multiple tissues are more likely to influence multiple complex traits. We identified many examples of tissue-specific effects, such as genetically-predicted TPO, NR3C2 and SPATA13 expression only associating with thyroid disease in thyroid tissue. Additionally, FBN2 expression was associated with both cardiovascular and lung function traits, but only when analysed in heart and lung tissue respectively.We also demonstrate that conducting phenome-wide evaluations of our results can help flag adverse on-target side effects for therapeutic intervention, as well as propose drug repositioning opportunities. Moreover, we find that exploring the tissue-dependency of associations identified by genome-wide association studies (GWAS) can help elucidate the causal genes and tissues responsible for effects, as well as uncover putative novel associations.ConclusionsThe atlas of tissue-dependent associations we have constructed should prove extremely valuable to future studies investigating the genetic determinants of complex disease. The follow-up analyses we have performed in this study are merely a guide for future research. Conducting similar evaluations can be undertaken systematically at http://mrcieu.mrsoftware.org/Tissue_MR_atlas/.



2019 ◽  
Author(s):  
Qian Yang ◽  
Eleanor Sanderson ◽  
Kate Tilling ◽  
M Carolina Borges ◽  
Deborah A Lawlor

AbstractBackgroundOur aim is to produce guidance on exploring and mitigating possible bias when genetic instrumental variables (IVs) associate with traits other than the exposure of interest in Mendelian randomization (MR) studies.MethodsWe use causal diagrams to illustrate scenarios that could result in IVs being related to (non-exposure) traits. We recommend that MR studies explore possible IV-non-exposure associations across a much wider range of traits than is usually the case. Where associations are found, confounding by population stratification should be assessed through adjusting for relevant population structure variables. To distinguish vertical from horizontal pleiotropy we suggest using bidirectional MR between the exposure and non-exposure traits and MR of the effect of the non-exposure traits on the outcome of interest. If vertical pleiotropy is plausible, standard MR methods should be unbiased. If horizontal pleiotropy is plausible, we recommend using multivariable MR to control for observed pleiotropic traits and conducting sensitivity analyses which do not require prior knowledge of specific invalid IVs or pleiotropic paths.ResultsWe applied our recommendations to an illustrative example of the effect of maternal insomnia on offspring birthweight in the UK Biobank. We found little evidence that unexpected IV-non-exposure associations were driven by population stratification. Three out of six observed non-exposure traits plausibly reflected horizontal pleiotropy. Multivariable MR and sensitivity analyses suggested an inverse association of insomnia with birthweight, but effects were imprecisely estimated in some of these analyses.ConclusionsWe provide guidance for MR studies where genetic IVs associate with non-exposure traits.Key messagesGenetic variants are increasingly found to associate with more than one social, behavioural or biological trait at genome-wide significance, which is a challenge in Mendelian randomization (MR) studies.Four broad scenarios (i.e. population stratification, vertical pleiotropy, horizontal pleiotropy and reverse causality) could result in an IV-non-exposure trait association.Population stratification can be assessed through adjusting for population structure with individual data, while two-sample MR studies should check whether the original genome-wide association studies have used robust methods to properly account for it.We apply currently available MR methods for discriminating between vertical and horizontal pleiotropy and mitigating against horizontal pleiotropy to an example exploring the effect of maternal insomnia on offspring birthweight.Our study highlights the pros and cons of relying more on sensitivity analyses without considering particular pleiotropic paths versus systematically exploring and controlling for potential pleiotropic paths via known characteristics.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Zhang ◽  
Jing Chen ◽  
Zhiqun Yin ◽  
Lanbing Wang ◽  
Lihua Peng

AbstractObservational studies suggested a bidirectional correlation between depression and metabolic syndrome (MetS) and its components. However, the causal associations between them remained unclear. We aimed to investigate whether genetically predicted depression is related to the risk of MetS and its components, and vice versa. We performed a bidirectional two-sample Mendelian randomization (MR) study using summary-level data from the most comprehensive genome-wide association studies (GWAS) of depression (n = 2,113,907), MetS (n = 291,107), waist circumference (n = 462,166), hypertension (n = 463,010) fasting blood glucose (FBG, n = 281,416), triglycerides (n = 441,016), high-density lipoprotein cholesterol (HDL-C, n = 403,943). The random-effects inverse-variance weighted (IVW) method was applied as the primary method. The results identified that genetically predicted depression was significantly positive associated with risk of MetS (OR: 1.224, 95% CI: 1.091–1.374, p = 5.58 × 10−4), waist circumference (OR: 1.083, 95% CI: 1.027–1.143, p = 0.003), hypertension (OR: 1.028, 95% CI: 1.016–1.039, p = 1.34 × 10−6) and triglycerides (OR: 1.111, 95% CI: 1.060–1.163, p = 9.35 × 10−6) while negative associated with HDL-C (OR: 0.932, 95% CI: 0.885–0.981, p = 0.007) but not FBG (OR: 1.010, 95% CI: 0.986–1.034, p = 1.34). No causal relationships were identified for MetS and its components on depression risk. The present MR analysis strength the evidence that depression is a risk factor for MetS and its components (waist circumference, hypertension, FBG, triglycerides, and HDL-C). Early diagnosis and prevention of depression are crucial in the management of MetS and its components.



2020 ◽  
Author(s):  
Sean Harrison ◽  
Neil M Davies ◽  
Laura D Howe ◽  
Amanda Hughes

AbstractMen with more advantaged socioeconomic position (SEP) and better health have been observed to have higher levels of testosterone. It is unclear whether these associations arise because testosterone has a causal impact on SEP and health. In 306,248 participants of UK Biobank, we performed sex- stratified genome-wide association analysis to identify genetic variants associated with testosterone. Using the identified variants, we performed Mendelian randomization analysis of the influence of testosterone on socioeconomic position, including income, employment status, area-level deprivation, and educational qualifications; on health, including self-rated health and BMI, and on risk-taking behaviour. We found little evidence that testosterone affected socioeconomic position, health, or risk-taking. Our results therefore suggest it is unlikely that testosterone meaningfully affects these outcomes in men or women. Differences between Mendelian randomization and multivariable-adjusted estimates suggest previously reported associations with socioeconomic position and health may be due to residual confounding or reverse causation.



2020 ◽  
Author(s):  
Shuai Li

AbstractBackgroundLifestyle factors including obesity and smoking are suggested to be related to increased risk of COVID-19 severe illness or related death. However, little is known about whether these relationships are causal, or the relationships between COVID-19 severe illness and other lifestyle factors, such as alcohol consumption and physical activity.MethodsGenome-wide significant genetic variants associated with body mass index (BMI), lifetime smoking, alcohol consumption and physical activity identified by large-scale genome-wide association studies (GWAS) were selected as instrumental variables. GWAS summary statistics of these genetic variants for relevant lifestyle factors and severe illness of COVID-19 were obtained. Two-sample Mendelian randomization (MR) analyses were conducted.ResultsBoth genetically predicted BMI and lifetime smoking were associated with about 2-fold increased risks of severe respiratory COVID-19 and COVID-19 hospitalization (all P<0.05). Genetically predicted physical activity was associated with about 5-fold (95% confidence interval [CI], 1.4, 20.3; P=0.02) decreased risk of severe respiratory COVID-19, but not with COVID-19 hospitalization, though the majority of the 95% CI did not include one. No evidence of association was found for genetically predicted alcohol consumption, but associations were found when using pleiotropy robust methods.ConclusionEvidence is found that BMI and smoking causally increase and physical activity causally decreases the risk of COVID-19 severe illness. This study highlights the importance of maintaining a healthy lifestyle in protecting from COVID-19 severe illness and its public health value in fighting against COVID-19 pandemic.



2019 ◽  
Author(s):  
Jessica MB Rees ◽  
Christopher N Foley ◽  
Stephen Burgess

AbstractBackgroundFactorial Mendelian randomization is the use of genetic variants to answer questions about interactions. Although the approach has been used in applied investigations, little methodological advice is available on how to design or perform a factorial Mendelian randomization analysis. Previous analyses have employed a 2 × 2 approach, using dichotomized genetic scores to divide the population into 4 subgroups as in a factorial randomized trial.MethodsWe describe two distinct contexts for factorial Mendelian randomization: investigating interactions between risk factors, and investigating interactions between pharmacological interventions on risk factors. We propose two-stage least squares methods using all available genetic variants and their interactions as instrumental variables, and using continuous genetic scores as instrumental variables rather than dichotomized scores. We illustrate our methods using data from UK Biobank to investigate the interaction between body mass index and alcohol consumption on systolic blood pressure.ResultsSimulated and real data show that efficiency is maximized using the full set of interactions between genetic variants as instruments. In the applied example, between four- and ten-fold improvement in efficiency is demonstrated over the 2 × 2 approach. Analyses using continuous genetic scores are more efficient than those using dichotomized scores. Efficiency is improved by finding genetic variants that divide the population at a natural break in the distribution of the risk factor, or else divide the population into more equal sized groups.ConclusionsPrevious factorial Mendelian randomization analyses may have been under-powered. Efficiency can be improved by using all genetic variants and their interactions as instrumental variables, rather than the 2 × 2 approach.Key messagesFactorial Mendelian randomization is an extension of the Mendelian randomization paradigm to answer questions about interactions.There are two contexts in which factorial Mendelian randomization can be used: for investigating interactions between risk factors, and interactions between pharmacological interventions on risk factors.While most applications of factorial Mendelian randomization have dichotomized the population as in a 2 × 2 factorial randomized trial, this approach is generally inefficient for detecting statistical interactions.In the first context, efficiency is maximized by including all genetic variants and their cross-terms as instrumental variables for the two risk factors and their product term.In the second context, efficiency is maximized by using continuous genetic scores rather than dichotomized scores.



2019 ◽  
Author(s):  
Eric A.W. Slob ◽  
Stephen Burgess

AbstractThe number of Mendelian randomization analyses including large numbers of genetic variants is rapidly increasing. This is due to the proliferation of genome-wide association studies, and the desire to obtain more precise estimates of causal effects. Since it is unlikely that all genetic variants will be valid instrumental variables, several robust methods have been proposed. We compare nine robust methods for Mendelian randomization based on summary data that can be implemented using standard statistical software. Methods were compared in three ways: by reviewing their theoretical properties, in an extensive simulation study, and in an empirical example to investigate the effect of body mass index on coronary artery disease risk. In the simulation study, the overall best methods, judged by mean squared error, were the contamination mixture method and the mode based estimation method. These methods generally had well-controlled Type 1 error rates with up to 50% invalid instruments across a range of scenarios. Outlier-robust methods such as MR-Lasso, MR-Robust, and MR-PRESSO, had the narrowest confidence intervals in the empirical example. They performed well when most variants were valid instruments with a few outliers, but less well with several invalid instruments. With isolated exceptions, all methods performed badly when over 50% of the variants were invalid instruments. Our recommendation for investigators is to perform a variety of robust methods that operate in different ways and rely on different assumptions for valid inferences to assess the reliability of Mendelian randomization analyses.



2019 ◽  
Vol 26 (34) ◽  
pp. 6207-6221 ◽  
Author(s):  
Innocenzo Rainero ◽  
Alessandro Vacca ◽  
Flora Govone ◽  
Annalisa Gai ◽  
Lorenzo Pinessi ◽  
...  

Migraine is a common, chronic neurovascular disorder caused by a complex interaction between genetic and environmental risk factors. In the last two decades, molecular genetics of migraine have been intensively investigated. In a few cases, migraine is transmitted as a monogenic disorder, and the disease phenotype cosegregates with mutations in different genes like CACNA1A, ATP1A2, SCN1A, KCNK18, and NOTCH3. In the common forms of migraine, candidate genes as well as genome-wide association studies have shown that a large number of genetic variants may increase the risk of developing migraine. At present, few studies investigated the genotype-phenotype correlation in patients with migraine. The purpose of this review was to discuss recent studies investigating the relationship between different genetic variants and the clinical characteristics of migraine. Analysis of genotype-phenotype correlations in migraineurs is complicated by several confounding factors and, to date, only polymorphisms of the MTHFR gene have been shown to have an effect on migraine phenotype. Additional genomic studies and network analyses are needed to clarify the complex pathways underlying migraine and its clinical phenotypes.



Author(s):  
Guanghao Qi ◽  
Nilanjan Chatterjee

Abstract Background Previous studies have often evaluated methods for Mendelian randomization (MR) analysis based on simulations that do not adequately reflect the data-generating mechanisms in genome-wide association studies (GWAS) and there are often discrepancies in the performance of MR methods in simulations and real data sets. Methods We use a simulation framework that generates data on full GWAS for two traits under a realistic model for effect-size distribution coherent with the heritability, co-heritability and polygenicity typically observed for complex traits. We further use recent data generated from GWAS of 38 biomarkers in the UK Biobank and performed down sampling to investigate trends in estimates of causal effects of these biomarkers on the risk of type 2 diabetes (T2D). Results Simulation studies show that weighted mode and MRMix are the only two methods that maintain the correct type I error rate in a diverse set of scenarios. Between the two methods, MRMix tends to be more powerful for larger GWAS whereas the opposite is true for smaller sample sizes. Among the other methods, random-effect IVW (inverse-variance weighted method), MR-Robust and MR-RAPS (robust adjust profile score) tend to perform best in maintaining a low mean-squared error when the InSIDE assumption is satisfied, but can produce large bias when InSIDE is violated. In real-data analysis, some biomarkers showed major heterogeneity in estimates of their causal effects on the risk of T2D across the different methods and estimates from many methods trended in one direction with increasing sample size with patterns similar to those observed in simulation studies. Conclusion The relative performance of different MR methods depends heavily on the sample sizes of the underlying GWAS, the proportion of valid instruments and the validity of the InSIDE assumption. Down-sampling analysis can be used in large GWAS for the possible detection of bias in the MR methods.



Sign in / Sign up

Export Citation Format

Share Document