scholarly journals A tradeoff between robustness to environmental fluctuations and speed of evolution

2019 ◽  
Author(s):  
Max Schmid ◽  
Maria Paniw ◽  
Maarten Postuma ◽  
Arpat Ozgul ◽  
Frédéric Guillaume

AbstractOrganisms must cope with both short- and long-term environmental changes to persist. In this study we investigated whether life histories trade-off between their robustness to short-term environmental perturbations and their ability to evolve directional trait changes. We could confirm the tradeoff by modeling the eco-evolutionary dynamics of life-histories along the fast-slow pace-of-life continuum. Offspring dormancy and high adult survival rates allowed for large population sizes to be maintained in face of interannual environmental fluctuations but limited the speed of trait evolution with ongoing environmental change. In contrast, precocious offspring maturation and short-living adults promoted evolvability while lowering demographic robustness. This tradeoff had immediate consequences on extinction dynamics in variable environments. High evolvability allowed short-lived species to cope with long-lasting gradual environmental change, but came at the expense of more pronounced population declines and extinction rates from environmental variability. Higher robustness of slow life-histories helped them persist better on short timescales.

2020 ◽  
Author(s):  
Solomon T. C. Chak ◽  
Stephen E. Harris ◽  
Kristin M. Hultgren ◽  
J. Emmett Duffy ◽  
Dustin R. Rubenstein

AbstractEusocial animals often achieve ecological dominance in the ecosystems where they occur, a process that may be linked to their demography. That is, reproductive division of labor and high reproductive skew in eusocial species is predicted to result in more stable effective population sizes that may make groups more competitive, but also lower effective population sizes that may make groups more susceptible to inbreeding and extinction. We examined the relationship between demography and social organization in one of the few animal lineages where eusociality has evolved recently and repeatedly among close relatives, the Synalpheus snapping shrimps. Although eusocial species often dominate the reefs where they occur by outcompeting their non-eusocial relatives for access to sponge hosts, many eusocial species have recently become extirpated across the Caribbean. Coalescent-based historical demographic inference in 12 species found that across nearly 100,000 generations, eusocial species tended to have lower but more stable effective population sizes through time. Our results are consistent with the idea that stable population sizes may enable eusocial shrimps to be more competitively dominant, but they also suggest that recent population declines are likely caused by eusocial shrimps’ heightened sensitivity to anthropogenically-driven environmental changes as a result of their low effective population sizes and localized dispersal, rather than to natural cycles of inbreeding and extinction. Thus, although the unique life histories and demography of eusocial shrimps has likely contributed to their persistence and ecological dominance over evolutionary timescales, these social traits may also make them vulnerable to contemporary environmental change.


Author(s):  
Andrew P. Hendry

This chapter evaluates various methods for inferring how phenotypes/genotypes influence population dynamics, including extensions of the year-by-year tracking approach used in analyzing the eco-to-evo side of eco-evolutionary dynamics. It provides a detailed outline of the various possibilities, including complexities that move beyond population dynamics. The chapter examines how maladaptation resulting from environmental change might decrease individual fitness and contribute to population declines, range contractions, and extirpations. It considers the extent to which contemporary evolution helps to recover individual fitness and population size, which might then make the difference between persistence versus extirpation and range expansion versus contraction. A final analysis asks how phenotypic variation within populations and species influences population dynamics.


The Condor ◽  
2000 ◽  
Vol 102 (1) ◽  
pp. 155-162 ◽  
Author(s):  
Douglas F. Bertram ◽  
Ian L. Jones ◽  
Evan G. Cooch ◽  
Hugh A. Knechtel ◽  
Fred Cooke

Abstract We estimated survival of Cassin's Auklet (Ptychoramphus aleuticus) and Rhinoceros Auklet (Cerorhinca monocerata) from recapture rates during 1994–1997. For both species, a two “age”-class model provided the best fit. Estimates of local adult survival were significantly lower for Cassin's Auklet (0.672 ± 0.047) than for Rhinoceros Auklet (0.829 ± 0.095). Our estimate of survival appears lower than that required for the maintenance of a stable population of Cassin's Auklets. The available information indicates that a low survival rate and a declining population at Triangle Island are plausible, particularly given the recent large scale oceanographic changes which have occurred in the North Pacific Ocean. Nevertheless, additional mark-recapture data and indexes of population size are required to rigorously demonstrate population declines at the world's largest Cassin's Auklet colony.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20202955
Author(s):  
Catriona A. Morrison ◽  
Simon J. Butler ◽  
Robert A. Robinson ◽  
Jacquie A. Clark ◽  
Juan Arizaga ◽  
...  

Wildlife conservation policies directed at common and widespread, but declining, species are difficult to design and implement effectively, as multiple environmental changes are likely to contribute to population declines. Conservation actions ultimately aim to influence demographic rates, but targeting actions towards feasible improvements in these is challenging in widespread species with ranges that encompass a wide range of environmental conditions. Across Europe, sharp declines in the abundance of migratory landbirds have driven international calls for action, but actions that could feasibly contribute to population recovery have yet to be identified. Targeted actions to improve conditions on poor-quality sites could be an effective approach, but only if local conditions consistently influence local demography and hence population trends. Using long-term measures of abundance and demography of breeding birds at survey sites across Europe, we show that co-occurring species with differing migration behaviours have similar directions of local population trends and magnitudes of productivity, but not survival rates. Targeted actions to boost local productivity within Europe, alongside large-scale (non-targeted) environmental protection across non-breeding ranges, could therefore help address the urgent need to halt migrant landbird declines. Such demographic routes to recovery are likely to be increasingly needed to address global wildlife declines.


2012 ◽  
Vol 367 (1596) ◽  
pp. 1607-1614 ◽  
Author(s):  
Frank Seebacher ◽  
Craig E. Franklin

The emerging field of Conservation Physiology links environmental change and ecological success by the application of physiological theory, approaches and tools to elucidate and address conservation problems. Human activity has changed the natural environment to a point where the viability of many ecosystems is now under threat. There are already many descriptions of how changes in biological patterns are correlated with environmental changes. The next important step is to determine the causative relationship between environmental variability and biological systems. Physiology provides the mechanistic link between environmental change and ecological patterns. Physiological research, therefore, should be integrated into conservation to predict the biological consequences of human activity, and to identify those species or populations that are most vulnerable.


2016 ◽  
Vol 283 (1842) ◽  
pp. 20161387 ◽  
Author(s):  
Catriona A. Morrison ◽  
Robert A. Robinson ◽  
Simon J. Butler ◽  
Jacquie A. Clark ◽  
Jennifer A. Gill

Across Europe, rapid population declines are ongoing in many Afro-Palaearctic migratory bird species, but the development of appropriate conservation actions across such large migratory ranges is severely constrained by lack of understanding of the demographic drivers of these declines. By constructing regional integrated population models (IPMs) for one of the suite of migratory species that is declining in the southeast of Britain but increasing in the northwest, we show that, while annual population growth rates in both regions vary with adult survival, the divergent regional trajectories are primarily a consequence of differences in productivity. Between 1994 and 2012, annual survival and productivity rates ranged over similar levels in both regions, but high productivity rates were rarer in the declining southeast population and never coincided with high survival rates. By contrast, population growth in the northwest was fuelled by several years in which higher productivity coincided with high survival rates. Simulated population trajectories suggest that realistic improvements in productivity could have reversed the decline (i.e. recovery of the population index to more than or equal to 1) in the southeast. Consequently, actions to improve productivity on European breeding grounds are likely to be a more fruitful and achievable means of reversing migrant declines than actions to improve survival on breeding, passage or sub-Saharan wintering grounds.


2018 ◽  
Author(s):  
Max Schmid ◽  
Ramon Dallo ◽  
Frédéric Guillaume

AbstractWhile clines in environmental tolerance and phenotypic plasticity along a single species’ range are widespread and of special interest in the context of adaptation to environmental changes, we know little about their evolution. Recent empirical findings in ectotherms suggest that processes underlying dynamic species’ ranges can give rise to spatial differences in environmental tolerance and phenotypic plasticity within species. We used individual-based simulations to investigate how plasticity and tolerance evolve in the course of three scenarios of species’ range shifts and range expansions on environmental gradients. We found that regions of a species’ range which experienced a longer history or larger extent of environmental change generally exhibited increased plasticity or tolerance. Such regions may be at the trailing edge when a species is tracking its ecological niche in space (e.g., in a climate change scenario) or at the front edge when a species expands into a new habitat (e.g., in an expansion/invasion scenario). Elevated tolerance and plasticity in the distribution center was detected when asymmetric environmental change (e.g., polar amplification) led to a range expansion. Greater gene flow across the range had a dual effect on plasticity and tolerance clines, with an amplifying effect in niche expansion scenarios (allowing for faster colonization into novel environments), but with a dampening effect in range shift scenarios (favoring spatial translocation of adapted genotypes). However, tolerance and plasticity clines were transient and slowly flattened out after range dynamics because of genetic assimilation. In general, our approach allowed us to investigate the evolution of environmental tolerance and phenotypic plasticity under transient evolutionary dynamics in non-equilibrium situations, which contributes to a better understanding of observed patterns and of how species may respond to future environmental changes.Impact SummaryIn a variable and changing environment, the ability of a species to cope with a range of selection pressures and a multitude of environmental conditions is critical, both for its’ spatial distribution and its’ long-term persistence. Striking examples of spatial differences in environmental tolerance have been found within species, when single populations differed from each other in their environmental optimum and tolerance breadth, a characteristic that might strongly modify a species’ response to future environmental change. However, we still know little about the evolutionary processes causing these tolerance differences between populations, especially when the differences result from transient evolutionary dynamics in non-equilibrium situations. We demonstrate with individual-based simulations, how spatial differences in environmental tolerance and phenotypic plasticity evolved across a species’ range during three scenarios of range shifts and range expansion. Range dynamics were either driven by environmental change or by the expansion of the ecological niche. The outcome strongly differed between scenarios as tolerance and plasticity were maximized either at the leading edge, at the trailing edge, or in the middle of the species’ range. Spatial tolerance variation resulted from colonization chronologies and histories of environmental change that varied along the range. Subsequent to the range dynamics, the tolerance and plasticity clines slowly leveled out again as result of genetic assimilation such that the described responses are long-lasting, but in the end temporary. These findings help us better understand species’ evolutionary responses during range shifts and range expansion, especially when facing environmental change.


2020 ◽  
Vol 646 ◽  
pp. 79-92
Author(s):  
RE Scheibling ◽  
R Black

Population dynamics and life history traits of the ‘giant’ limpet Scutellastra laticostata on intertidal limestone platforms at Rottnest Island, Western Australia, were recorded by interannual (January/February) monitoring of limpet density and size structure, and relocation of marked individuals, at 3 locations over periods of 13-16 yr between 1993 and 2020. Limpet densities ranged from 4 to 9 ind. m-2 on wave-swept seaward margins of platforms at 2 locations and on a rocky notch at the landward margin of the platform at a third. Juvenile recruits (25-55 mm shell length) were present each year, usually at low densities (<1 m-2), but localized pulses of recruitment occurred in some years. Annual survival rates of marked limpets varied among sites and cohorts, ranging from 0.42 yr-1 at the notch to 0.79 and 0.87 yr-1 on the platforms. A mass mortality of limpets on the platforms occurred in 2003, likely mediated by thermal stress during daytime low tides, coincident with high air temperatures and calm seas. Juveniles grew rapidly to adult size within 2 yr. Asymptotic size (L∞, von Bertalanffy growth model) ranged from 89 to 97 mm, and maximum size from 100 to 113 mm, on platforms. Growth rate and maximum size were lower on the notch. Our empirical observations and simulation models suggest that these populations are relatively stable on a decadal time scale. The frequency and magnitude of recruitment pulses and high rate of adult survival provide considerable inertia, enabling persistence of these populations in the face of sporadic climatic extremes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sarah T. Saalfeld ◽  
Brooke L. Hill ◽  
Christine M. Hunter ◽  
Charles J. Frost ◽  
Richard B. Lanctot

AbstractClimate change in the Arctic is leading to earlier summers, creating a phenological mismatch between the hatching of insectivorous birds and the availability of their invertebrate prey. While phenological mismatch would presumably lower the survival of chicks, climate change is also leading to longer, warmer summers that may increase the annual productivity of birds by allowing adults to lay nests over a longer period of time, replace more nests that fail, and provide physiological relief to chicks (i.e., warmer temperatures that reduce thermoregulatory costs). However, there is little information on how these competing ecological processes will ultimately impact the demography of bird populations. In 2008 and 2009, we investigated the survival of chicks from initial and experimentally-induced replacement nests of arcticola Dunlin (Calidris alpina) breeding near Utqiaġvik, Alaska. We monitored survival of 66 broods from 41 initial and 25 replacement nests. Based on the average hatch date of each group, chick survival (up to age 15 days) from replacement nests (Ŝi = 0.10; 95% CI = 0.02–0.22) was substantially lower than initial nests (Ŝi = 0.67; 95% CI = 0.48–0.81). Daily survival rates were greater for older chicks, chicks from earlier-laid clutches, and during periods of greater invertebrate availability. As temperature was less important to daily survival rates of shorebird chicks than invertebrate availability, our results indicate that any physiological relief experienced by chicks will likely be overshadowed by the need for adequate food. Furthermore, the processes creating a phenological mismatch between hatching of shorebird young and invertebrate emergence ensures that warmer, longer breeding seasons will not translate into abundant food throughout the longer summers. Thus, despite having a greater opportunity to nest later (and potentially replace nests), young from these late-hatching broods will likely not have sufficient food to survive. Collectively, these results indicate that warmer, longer summers in the Arctic are unlikely to increase annual recruitment rates, and thus unable to compensate for low adult survival, which is typically limited by factors away from the Arctic-breeding grounds.


Author(s):  
Annie Jonsson

AbstractMost animal species have a complex life cycle (CLC) with metamorphosis. It is thus of interest to examine possible benefits of such life histories. The prevailing view is that CLC represents an adaptation for genetic decoupling of juvenile and adult traits, thereby allowing life stages to respond independently to different selective forces. Here I propose an additional potential advantage of CLCs that is, decreased variance in population growth rate due to habitat separation of life stages. Habitat separation of pre- and post-metamorphic stages means that the stages will experience different regimes of environmental variability. This is in contrast to species with simple life cycles (SLC) whose life stages often occupy one and the same habitat. The correlation in the fluctuations of the vital rates of life stages is therefore likely to be weaker in complex than in simple life cycles. By a theoretical framework using an analytical approach, I have (1) derived the relative advantage, in terms of long-run growth rate, of CLC over SLC phenotypes for a broad spectrum of life histories, and (2) explored which life histories that benefit most by a CLC, that is avoid correlation in vital rates between life stages. The direction and magnitude of gain depended on life history type and fluctuating vital rate. One implication of our study is that species with CLCs should, on average, be more robust to increased environmental variability caused by global warming than species with SLCs.


Sign in / Sign up

Export Citation Format

Share Document