scholarly journals Temporally-precise disruption of prefrontal cortex informed by the timing of beta bursts impairs human action-stopping

2019 ◽  
Author(s):  
Ricci Hannah ◽  
Vignesh Muralidharan ◽  
Kelsey K Sundby ◽  
Adam R Aron

ABSTRACTHuman action-stopping is thought to rely on a prefronto-basal ganglia-thalamocortical network, with right inferior frontal cortex (rIFC) posited to play a critical role in the early stage of implementation. Here we sought causal evidence for this idea in experiments involving healthy human participants. We first show that action-stopping is preceded by bursts of electroencephalographic activity in the beta band over prefrontal electrodes, putatively rIFC, and that the timing of these bursts correlates with the latency of stopping at a single-trial level: earlier bursts are associated with faster stopping. From this we reasoned that the integrity of rIFC at the time of beta bursts might be critical to successful stopping. We then used fMRI-guided transcranial magnetic stimulation (TMS) to disrupt rIFC at the approximate time of beta bursting. Stimulation prolonged stopping latencies and, moreover, the prolongation was most pronounced in individuals for whom the pulse appeared closer to the presumed time of beta bursting. These results help validate a model of the neural architecture and temporal dynamics of action-stopping. They also highlight the usefulness of prefrontal beta bursts to index an apparently important sub-process of stopping, the timing of which might help explain within- and between-individual variation in impulse control.

2016 ◽  
Vol 82 (24) ◽  
pp. 7063-7073 ◽  
Author(s):  
Michael T. France ◽  
Helena Mendes-Soares ◽  
Larry J. Forney

ABSTRACTLactobacillus crispatusandLactobacillus inersare common inhabitants of the healthy human vagina. These two species are closely related and are thought to perform similar ecological functions in the vaginal environment. Temporal data on the vaginal microbiome have shown that nontransient instances of cooccurrence are uncommon, while transitions from anL. iners-dominated community to one dominated byL. crispatus, and vice versa, occur often. This suggests that there is substantial overlap in the fundamental niches of these species. Given this apparent niche overlap, it is unclear how they have been maintained as common inhabitants of the human vagina. In this study, we characterized and compared the genomes ofL. inersandL. crispatusto gain insight into possible mechanisms driving the maintenance of this species diversity. Our results highlight differences in the genomes of these two species that may facilitate the partitioning of their shared niche space. Many of the identified differences may impact the protective benefits provided to the host by these two species.IMPORTANCEThe microbial communities that inhabit the human vagina play a critical role in the maintenance of vaginal health through the production of lactic acid and lowering the environmental pH. This precludes the growth of nonindigenous organisms and protects against infectious disease. The two most common types of vaginal communities are dominated by eitherLactobacillus inersorLactobacillus crispatus, while some communities alternate between the two over time. We combined ecological theory with state-of-the-art genome analyses to characterize how these two species might partition their shared niche space in the vagina. We show that the genomes ofL. inersandL. crispatusdiffer in many respects, several of which may drive differences in their competitive abilities in the vagina. Our results provide insight into factors that drive the complicated temporal dynamics of the vaginal microbiome and demonstrate how closely related microbial species partition shared fundamental niche space.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Katrin H Preller ◽  
Joshua B Burt ◽  
Jie Lisa Ji ◽  
Charles H Schleifer ◽  
Brendan D Adkinson ◽  
...  

Background:Lysergic acid diethylamide (LSD) has agonist activity at various serotonin (5-HT) and dopamine receptors. Despite the therapeutic and scientific interest in LSD, specific receptor contributions to its neurobiological effects remain unknown.Methods:We therefore conducted a double-blind, randomized, counterbalanced, cross-over studyduring which 24 healthy human participants received either (i) placebo+placebo, (ii) placebo+LSD (100 µg po), or (iii) Ketanserin, a selective 5-HT2A receptor antagonist,+LSD. We quantified resting-state functional connectivity via a data-driven global brain connectivity method and compared it to cortical gene expression maps.Results:LSD reduced associative, but concurrently increased sensory-somatomotor brain-wide and thalamic connectivity. Ketanserin fully blocked the subjective and neural LSD effects. Whole-brain spatial patterns of LSD effects matched 5-HT2A receptor cortical gene expression in humans.Conclusions:Together, these results strongly implicate the 5-HT2A receptor in LSD’s neuropharmacology. This study therefore pinpoints the critical role of 5-HT2A in LSD’s mechanism, which informs its neurobiology and guides rational development of psychedelic-based therapeutics.Funding:Funded by the Swiss National Science Foundation, the Swiss Neuromatrix Foundation, the Usona Institute, the NIH, the NIAA, the NARSAD Independent Investigator Grant, the Yale CTSA grant, and the Slovenian Research Agency.Clinical trial number:NCT02451072.


2021 ◽  
Vol 11 (3) ◽  
pp. 330
Author(s):  
Dalton J. Edwards ◽  
Logan T. Trujillo

Traditionally, quantitative electroencephalography (QEEG) studies collect data within controlled laboratory environments that limit the external validity of scientific conclusions. To probe these validity limits, we used a mobile EEG system to record electrophysiological signals from human participants while they were located within a controlled laboratory environment and an uncontrolled outdoor environment exhibiting several moderate background influences. Participants performed two tasks during these recordings, one engaging brain activity related to several complex cognitive functions (number sense, attention, memory, executive function) and the other engaging two default brain states. We computed EEG spectral power over three frequency bands (theta: 4–7 Hz, alpha: 8–13 Hz, low beta: 14–20 Hz) where EEG oscillatory activity is known to correlate with the neurocognitive states engaged by these tasks. Null hypothesis significance testing yielded significant EEG power effects typical of the neurocognitive states engaged by each task, but only a beta-band power difference between the two background recording environments during the default brain state. Bayesian analysis showed that the remaining environment null effects were unlikely to reflect measurement insensitivities. This overall pattern of results supports the external validity of laboratory EEG power findings for complex and default neurocognitive states engaged within moderately uncontrolled environments.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelrahman M. Alhilou ◽  
Akiko Shimada ◽  
Camilla I. Svensson ◽  
Peter Svensson ◽  
Malin Ernberg ◽  
...  

AbstractThe neurophysiological mechanisms underlying NGF-induced masseter muscle sensitization and sex-related differences in its effect are not well understood in humans. Therefore, this longitudinal cohort study aimed to investigate the effect of NGF injection on the density and expression of substance P, NMDA-receptors and NGF by the nerve fibers in the human masseter muscle, to correlate expression with pain characteristics, and to determine any possible sex-related differences in these effects of NGF. The magnitude of NGF-induced mechanical sensitization and pain during oral function was significantly greater in women than in men (P < 0.050). Significant positive correlations were found between nerve fiber expression of NMDA-receptors and peak pain intensity (rs = 0.620, P = 0.048), and expression of NMDA-receptors by putative nociceptors and change in temporal summation pain after glutamate injection (rs = 0.561, P = 0.003). In women, there was a significant inverse relationship between the degree of NGF-induced mechanical sensitization and the change in nerve fiber expression of NMDA-receptors alone (rs = − 0.659, P = 0.013), and in combination with NGF (rs = − 0.764, P = 0.001). In conclusion, women displayed a greater magnitude of NGF-induced mechanical sensitization that also was associated with nerve fibers expression of NMDA-receptors, when compared to men. The present findings suggest that, in women, increased peripheral NMDA-receptor expression could be associated with masseter muscle pain sensitivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chun-Ping Hao ◽  
Nan-Jue Cao ◽  
Yu-He Zhu ◽  
Wei Wang

AbstractDental implants are commonly used to repair missing teeth. The implant surface plays a critical role in promoting osseointegration and implant success. However, little information is available about which implant surface treatment technology best promotes osseointegration and implant stability. The aim of this network meta-analysis was to evaluate the osseointegration and stability of four commonly used dental implants (SLA, SLActive, TiUnite, and Osseotite). The protocol of the current meta-analysis is registered in PROSPERO (International Prospective Register of Systematic Reviews) under the code CRD42020190907 (https://www.crd.york.ac.uk). We conducted a systematic review following PRISMA and Cochrane Recommendations. Medline (PubMed), Cochrane Library, Embase, and the Web of Science databases were searched. Only randomized controlled trials were considered. Twelve studies were included in the current network meta-analysis, eleven studies were included concerning the osseointegration effect and five studies were included for stability analysis (four studies were used to assess both stability and osseointegration). Rank possibility shows that the SLActive surface best promoted bone formation at an early healing stage and TiUnite seemed to be the best surface for overall osseointegration. For stability, TiUnite seemed to be the best surface. The present network meta-analysis showed that the SLActive surface has the potential to promote osseointegration at an early stage. The TiUnite surface had the best effect on osseointegration regarding the overall healing period. The TiUnite surface also had the best effect in stability.


Author(s):  
Corey George Wadsley ◽  
John Cirillo ◽  
Arne Nieuwenhuys ◽  
Winston D Byblow

Response inhibition is essential for goal-directed behavior within dynamic environments. Selective stopping is a complex form of response inhibition where only part of a multi-effector response must be cancelled. A substantial response delay emerges on unstopped effectors when a cued effector is successfully stopped. This stopping-interference effect is indicative of nonselective response inhibition during selective stopping which may, in-part, be a consequence of functional coupling. The present study examined selective stopping of (de)coupled bimanual responses in healthy human participants of either sex. Participants performed synchronous and asynchronous versions of an anticipatory stop-signal paradigm across two sessions while mu (µ) and beta (β) rhythm were measured with electroencephalography. Results showed that responses were behaviorally decoupled during asynchronous go trials and the extent of response asynchrony was associated with lateralized sensorimotor µ and β desynchronization during response preparation. Selective stopping produced a stopping-interference effect and was marked by a nonselective increase and subsequent rebound in prefrontal and sensorimotor β. In support of the coupling account, stopping-interference was smaller during selective stopping of asynchronous responses, and negatively associated with the magnitude of decoupling. However, the increase in sensorimotor β during selective stopping was equivalent between the stopped and unstopped hand irrespective of response synchrony. Overall, the findings demonstrate that decoupling facilitates selective stopping after a global pause process and emphasizes the importance of considering the influence of both the go and stop context when investigating response inhibition.


2013 ◽  
Vol 110 (1) ◽  
pp. 162-169 ◽  
Author(s):  
O. Le Bon ◽  
P. Linkowski

Previous studies in animals and humans have reported correlations between the durations of rapid eye movement sleep (REMS) episodes and immediately preceding or subsequent non-REMS (NREMS) episodes. The relationship between these two types of sleep is a crucial component in understanding the regulation and neurophysiology of ultradian alternations that occur during sleep. Although the present study replicated previous studies, we also measured NREMS in terms of spectral power Delta and Ultra-Slow bands in addition to duration in examining correlations. The spectral power Delta band, also known as slow-wave activity, measures sleep quantity and is believed to reflect sleep physiology better than mere episode durations. The Ultra-Slow spectral power band was analyzed in parallel. Healthy human participants of both sexes ( n = 26, age range 15–45 yr, n = 12 female) were carefully selected to participate in two consecutive series of home polysomnograms performed after 2 nights of habituation to the equipment. In the analyses, REMS episode durations (minutes) were compared with immediately preceding and immediately subsequent NREMS episodes (Delta and Ultra-Slow power) in each sleep cycle. REMS episode duration was more strongly correlated with preceding NREMS episodes than with subsequent NREMS episodes. However, in most cases, no correlations were observed in either direction. One ultradian sleep regulation hypothesis, which is based on stronger correlations between REMS and subsequent NREMS episode durations, holds that the main purpose of REMS is to reactivate NREMS during each sleep cycle. The present results do not support that hypothesis.


2015 ◽  
Vol 78 (8) ◽  
pp. 1554-1559 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JAMES L. BONO

Bacterial biofilms are one of the potential sources of cross-contamination in food processing environments. Shiga toxin–producing Escherichia coli (STEC) O157:H7 and O111:H8 are important foodborne pathogens capable of forming biofilms, and the coexistence of these two STEC serotypes has been detected in various food samples and in multiple commercial meat plants throughout the United States. Here, we investigated how the coexistence of these two STEC serotypes and their sequence of colonization could affect bacterial growth competition and mixed biofilm development. Our data showed that E. coli O157:H7 strains were able to maintain a higher cell percentage in mixed biofilms with the co-inoculated O111:H8 companion strains, even though the results of planktonic growth competition were strain dependent. On solid surfaces with preexisting biofilms, the sequence of colonization played a critical role in determining the composition of the mixed biofilms because early stage precolonization significantly affected the competition results between the E. coli O157:H7 and O111:H8 strains. The precolonizer of either serotype was able to outgrow the other serotype in both planktonic and biofilm phases. The competitive interactions among the various STEC serotypes would determine the composition and structure of the mixed biofilms as well as their potential risks to food safety and public health, which is largely influenced by the dominant strains in the mixtures. Thus, the analysis of mixed biofilms under various conditions would be of importance to determine the nature of mixed biofilms composed of multiple microorganisms and to help implement the most effective disinfection operations accordingly.


Author(s):  
Jessica M. Deneweth ◽  
Kelly E. Newman ◽  
Stephen M. Sylvia ◽  
Scott G. McLean ◽  
Ellen M. Arruda

Nearly 3% of individuals worldwide experience pain, immobility, and compromised quality of life due to knee osteoarthritis (OA)1. It has been widely accepted that joint mechanics play a critical role in the initiation and progression of knee OA2. A shift away from the normal joint motion, for example due to injury or malalignment, is believed to produce an abnormal pattern of cartilage loading that creates unusual and damaging stresses within the tissue. Accurate knowledge of cartilage’s normal mechanical response to physiological loading—and particularly the regional dependence of this response—is critical to successfully testing this theory. To our knowledge, little is known about the regionally-dependent mechanical response of healthy human tibial cartilage under physiological loading conditions. There is also a compelling need for more accurate cartilage data to be integrated into computational simulations of the knee joint. Hence, the purpose of this study was two-fold: 1) to characterize the typical stress-strain response of tibial cartilage at 21 locations across the tibial plateau when subjected to loading representative of human walking, and 2) to demonstrate that these 21 sites can be reduced to a small number of regions displaying significantly different average moduli.


Sign in / Sign up

Export Citation Format

Share Document