scholarly journals Proteoglycan IMPG2 shapes the interphotoreceptor matrix and modulates vision

2019 ◽  
Author(s):  
Ezequiel M Salido ◽  
Visvanathan Ramamurthy

AbstractThe extracellular matrix surrounding the photoreceptor neurons, interphotoreceptor matrix (IPM) is comprised of two unique proteoglycans: IPM proteoglycan 1 and 2 (IMPG1 and IMPG2). Although the functions of the IPM are not understood, patients with mutations in IMPG1/2 develop visual deficits with subretinal material accumulation. Here, we generated mouse models lacking IMPG1/2 to decipher the role of these proteoglycans and the pathological mechanisms that lead to vision loss. IMPG1 and IMPG2 occupy specific locations in the outer retina, and both proteoglycans are fundamental for the constitution of the IPM system. Mice lacking IMPG2 show abnormal accumulation of IMPG1, and in later stages, develop subretinal lesions and reduced visual function. Interestingly, removal of IMPG1-2 showed normal retinal morphology and function, suggesting that the aberrant localization of IMPG1 causes the alterations observed in IMPG2 KO mice. In conclusion, our results demonstrate the role of IMPG2 in shaping the IPM, shed light on the potential mechanisms leading to subretinal lesions, and show that the secreted proteoglycans depend on the extracellular matrix environment to properly integrate into the matrix.

2019 ◽  
Vol 47 (5) ◽  
pp. 1543-1555 ◽  
Author(s):  
Maurizio Mongiat ◽  
Simone Buraschi ◽  
Eva Andreuzzi ◽  
Thomas Neill ◽  
Renato V. Iozzo

Abstract The extracellular matrix is a network of secreted macromolecules that provides a harmonious meshwork for the growth and homeostatic development of organisms. It conveys multiple signaling cascades affecting specific surface receptors that impact cell behavior. During cancer growth, this bioactive meshwork is remodeled and enriched in newly formed blood vessels, which provide nutrients and oxygen to the growing tumor cells. Remodeling of the tumor microenvironment leads to the formation of bioactive fragments that may have a distinct function from their parent molecules, and the balance among these factors directly influence cell viability and metastatic progression. Indeed, the matrix acts as a gatekeeper by regulating the access of cancer cells to nutrients. Here, we will critically evaluate the role of selected matrix constituents in regulating tumor angiogenesis and provide up-to-date information concerning their primary mechanisms of action.


2001 ◽  
Vol 12 (5) ◽  
pp. 373-398 ◽  
Author(s):  
Bjorn Steffensen ◽  
Lari Häkkinen ◽  
Hannu Larjava

During wound-healing, cells are required to migrate rapidly into the wound site via a proteolytically generated pathway in the provisional matrix, to produce new extracellular matrix, and, subsequently, to remodel the newly formed tissue matrix during the maturation phase. Two classes of molecules cooperate closely to achieve this goal, namely, the matrix adhesion and signaling receptors, the integrins, and matrix-degrading and -processing enzymes, the matrix metalloproteinases (MMPs). There is now substantial experimental evidence that blocking key molecules of either group will prevent or seriously delay wound-healing. It has been known for some time now that cell adhesion by means of the integrins regulates the expression of MMPs. In addition, certain MMPs can bind to integrins or other receptors on the cell surface involved in enzyme activation, thereby providing a mechanism for localized matrix degradation. By proteolytically modifying the existing matrix molecules, the MMPs can then induce changes in cell behavior and function from a state of rest to migration. During wound repair, the expression of integrins and MMPs is simultaneously up-regulated. This review will focus on those aspects of the extensive knowledge of fibroblast and keratinocyte MMPs and integrins in biological processes that relate to wound-healing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ilaria Righi ◽  
Valentina Vaira ◽  
Letizia Corinna Morlacchi ◽  
Giorgio Alberto Croci ◽  
Valeria Rossetti ◽  
...  

Chronic lung allograft dysfunction (CLAD) is the main cause of poor survival and low quality of life of lung transplanted patients. Several studies have addressed the role of dendritic cells, macrophages, T cells, donor specific as well as anti-HLA antibodies, and interleukins in CLAD, but the expression and function of immune checkpoint molecules has not yet been analyzed, especially in the two CLAD subtypes: BOS (bronchiolitis obliterans syndrome) and RAS (restrictive allograft syndrome). To shed light on this topic, we conducted an observational study on eight consecutive grafts explanted from patients who received lung re-transplantation for CLAD. The expression of a panel of immune molecules (PD1/CD279, PDL1/CD274, CTLA4/CD152, CD4, CD8, hFoxp3, TIGIT, TOX, B-Cell-Specific Activator Protein) was analyzed by immunohistochemistry in these grafts and in six control lungs. Results showed that RAS compared to BOS grafts were characterized by 1) the inversion of the CD4/CD8 ratio; 2) a higher percentage of T lymphocytes expressing the PD-1, PD-L1, and CTLA4 checkpoint molecules; and 3) a significant reduction of exhausted PD-1-expressing T lymphocytes (PD-1pos/TOXpos) and of exhausted Treg (PD-1pos/FOXP3pos) T lymphocytes. Results herein, although being based on a limited number of cases, suggest a role for checkpoint molecules in the development of graft rejection and offer a possible immunological explanation for the worst prognosis of RAS. Our data, which will need to be validated in ampler cohorts of patients, raise the possibility that the evaluation of immune checkpoints during follow-up offers a prognostic advantage in monitoring the onset of rejection, and suggest that the use of compounds that modulate the function of checkpoint molecules could be evaluated in the management of chronic rejection in LTx patients.


Development ◽  
1988 ◽  
Vol 103 (Supplement) ◽  
pp. 195-205
Author(s):  
J. B. L. Bard ◽  
M. K. Bansal ◽  
A. S. A. Ross

This paper examines the role of the extracellular matrix (ECM) in the development of the cornea. After a brief summary of the corneal structure and ECM, we describe evidence suggesting that the differentiation of neural crest (NC) cells into endothelium and fibroblasts is under the control of ocular ECM. We then examine the role of collagen I in stromal morphogenesis by comparing normal corneas with those of homozygous Movl3 mice which do not make collagen I. We report that, in spite of this absence, the cellular morphology of the Movl3 eye is indistinguishable from that of the wild type. In the 16-day mutant stroma, however, the remaining collagens form small amounts of disorganized, thin fibrils rather than orthogonally organized 20 nm-diameter fibrils; a result implying that collagen I plays only a structural role and that its absence is not compensated for. It also suggests that, because these remaining collagens will not form the normal fibrils that they will in vitro, fibrillogenesis in the corneal stroma differs from that elsewhere. The latter part of the paper describes our current work on chick stromal deposition using corneal epithelia isolated with an intact basal lamina that lay down in vitro ∼3μm-thick stromas of organized fibrils similar to that seen in vivo. This experimental system has yielded two unexpected results. First, the amount of collagen and proteoglycans produced by such epithelia is not dependent on whether its substratum is collagenous and we therefore conclude that stromal production by the intact epithelium is more autonomous than hitherto thought. Second, chondroitin sulphate (CS), the predominant proteoglycan, appears to play no role in stromal morphogenesis: epithelia cultured in testicular hyaluronidase, which degrades CS, lay down stromas whose organization and fibrildiameter distribution are indistinguishable from controls. One possible role for CS, however, is as a lubricant which facilitates corneal growth: it could allow fibrils to move over one another without deforming their orthogonal organization. Finally, we have examined the processes of fibrillogenesis in the corneal stroma and conclude that they are different from those elsewhere in the embryo and in vitro, perhaps because there is in the primary stroma an unidentified, highly hydrated ECM macromolecule that embeds the fibrils and that may mediate their morphogenesis.


1996 ◽  
Vol 74 (6) ◽  
pp. 823-831 ◽  
Author(s):  
Anita E. Yu ◽  
Robert E. Hewitt ◽  
David E. Kleiner ◽  
William G. Stetler-Stevenson

Extracellular matrix (ECM) turnover is an event that is tightly regulated. Much of the coordinate (physiological) or discoordinate (pathological) degradation of the ECM is catalyzed by a class of proteases known as the matrix metalloproteinases (MMPs) or matrixins. Matrixins are a family of homologous Zn atom dependent endopeptidases that are usually secreted from cells as inactive zymogens. Net degradative activity in the extracellular environment is regulated by specific activators and inhibitors. One member of the matrixin family, gelatinase A, is regulated differently from other MMPs, suggesting that it may play a unique role in cell–matrix interactions, including cell invasion. The conversion from the 72 kDa progelatinase A to the active 62 kDa species may be a key event in the acquisition of invasive potential. This discussion reviews some recent findings on the cellular mechanisms involved in progelatinase A activation and, in particular, the role of tissue inhibitor of matrix metalloproteinases-2 (TIMP-2) and transmembrane containing metalloproteinases (MT-MMP) in this process.Key words: tissue inhibitors of metalloproteinases, metalloproteinase, gelatinases, extracellular matrix, activation.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2594
Author(s):  
Yue Ruan ◽  
Tobias Böhmer ◽  
Subao Jiang ◽  
Adrian Gericke

The retina is a part of the central nervous system, a thin multilayer with neuronal lamination, responsible for detecting, preprocessing, and sending visual information to the brain. Many retinal diseases are characterized by hemodynamic perturbations and neurodegeneration leading to vision loss and reduced quality of life. Since catecholamines and respective bindings sites have been characterized in the retina, we systematically reviewed the literature with regard to retinal expression, distribution and function of alpha1 (α1)-, alpha2 (α2)-, and beta (β)-adrenoceptors (ARs). Moreover, we discuss the role of the individual adrenoceptors as targets for the treatment of retinal diseases.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Julie Williams ◽  
Sanlin Robinson ◽  
Babak Alaei ◽  
Kimberly Homan ◽  
Maryam Clausen ◽  
...  

Abstract Background and Aims Questions abound regarding the translation of in vitro 2D cell culture systems to the human setting. This is especially true of the kidney in which there is a complex hierarchical structure and a multitude of cell types. While it is well accepted that extracellular matrix plays a large part in directing cellular physiology emerging research has highlighted the importance of shear stresses and flow rates too. To fully recapitulate the normal gene expression and function of a particular renal cell type how important is it to completely reconstitute their in vivo surroundings? Method To answer this question, we have cultured proximal tubular (PT) epithelial cells in a 3-dimensional channel embedded within an engineered extracellular matrix (ECM) under physiological flow that is colocalised with an adjacent channel lined with renal microvascular endothelial cells that mimic a peritubular capillary. Modifications to the system were made to allow up to 12 chips to be run in parallel in an easily handleable form. After a period of maturation under continuous flow, both cell types were harvested for RNAseq analyses. RNA expression data was compared with cells cultured under static 2-dimensional conditions on plastic or the engineered ECM. Additionally, the perfusion of glucose through this 3D vascularised PT model has been investigated in the presence and absence of known diabetes modulating agents. Results PCA of RNAseq data showed that a) static non-coated, b) static matrix-coated and c) flow matrix-coated conditions separated into 3 distinct groups, while cell co-culture had less impact. Analysis of transcriptomic signatures showed that many genes were modulated by the matrix with additional genes influenced under flow conditions. Several of these genes, classified as transporters, are of particular importance when using this model to assess drug uptake and safety implications. Co-culture regulated some interesting genes, but fewer than anticipated. Preliminary experiments are underway to monitor glucose uptake and transport between tubules under different conditions. Conclusion We have developed a medium throughput system in which matrix and flow modulate gene expression. This system can be used to study the physiology of molecular cross-talk between cells. Ongoing analysis will further consider relevance to human physiology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Welcker ◽  
Cornelia Stein ◽  
Natalia Martins Feitosa ◽  
Joy Armistead ◽  
Jin-Li Zhang ◽  
...  

AbstractThe extracellular matrix architecture is composed of supramolecular fibrillar networks that define tissue specific cellular microenvironments. Hemicentins (Hmcn1 and Hmcn2) are ancient and very large members (> 600 kDa) of the fibulin family, whose short members are known to guide proper morphology and functional behavior of specialized cell types predominantly in elastic tissues. However, the tissue distribution and function of Hemicentins within the cellular microenvironment of connective tissues has remained largely unknown. Performing in situ hybridization and immunofluorescence analyses, we found that mouse Hmcn1 and Hmcn2 show a complementary distribution throughout different tissues and developmental stages. In postnatal dermal–epidermal junctions (DEJ) and myotendinous junctions (MTJ), Hmcn1 is primarily produced by mesenchymal cells (fibroblasts, tenocytes), Hmcn2 by cells of epithelial origin (keratinocytes, myocytes). Hmcn1−/− mice are viable and show no overt phenotypes in tissue tensile strength and locomotion tests. However, transmission electron microscopy revealed ultrastructural basement membrane (BM) alterations at the DEJ and MTJ of Hmcn1−/− mice, pointing to a thus far unknown role of Hmcn1 for BM and connective tissue boundary integrity.


2019 ◽  
Author(s):  
Ben T. Larson ◽  
Teresa Ruiz-Herrero ◽  
Stacey Lee ◽  
Sanjay Kumar ◽  
L. Mahadevan ◽  
...  

AbstractInspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellateSalpingoeca rosetta. We find that rosettes reproducibly transition from an early stage of 2D growth to a later stage of 3D growth, despite the underlying stochasticity of the cell lineages. We postulate that the extracellular matrix (ECM) exerts a physical constraint on the packing of proliferating cells, thereby sculpting rosette morphogenesis. Our perturbative experiments coupled with biophysical simulations demonstrates the fundamental importance of a basally-secreted ECM for rosette morphogenesis. In addition, this yields a morphospace for the shapes of these multicellular colonies, consistent with observations of a range of choanoflagellates. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and thus helps illuminate the interplay between cell biology and physics in regulating morphogenesis.Significance statementComparisons among animals and their closest living relatives, the choanoflagellates, have begun to shed light on the origin of animal multicellularity and development. Here we complement previous genetic perspectives on this process by focusing on the biophysical principles underlying colony morphology and morphogenesis. Our study reveals the crucial role of the extracellular matrix in shaping the colonies and leads to a phase diagram that delineates the range of morphologies as a function of the biophysical mechanisms at play.


Author(s):  
Alan C. Rapraeger ◽  
Joy E. Koda ◽  
Merton Bernfield

The shape of adherent cells is the product of two scaffolds: the Intracellular cytoskeleton and the surrounding extracellular matrix. During epithelial morphogenesis, changes In cell shape require modifications in both of these structures. Studies of the components of the cytoskeleton, their Inter-relationships and their response to cell motility and shape changes have provided rich Information about how changes in cytoskeletal organization may take place. Less is known about how extracellular molecules interact with one another, and particularly how the cell regulates these matrix interactions. As an approach to this problem, we are investigating the structure and function of heparan sulfate proteoglycans in mammary eplthellal cells, molecules that are able to bind a variety of matrix molecules, and therefore may have an organizational role in extracellular matrix assembly. Additionally, some are Integrally associated with the plasma membrane, thereby potentially anchoring the cell to the matrix.


Sign in / Sign up

Export Citation Format

Share Document