scholarly journals Role of SHIP2 in cell repulsion regulated by Eph receptor and ephrin signaling

2019 ◽  
Author(s):  
Tim G. Ashlin ◽  
Zhonglin Wu ◽  
Qiling Xu ◽  
David G. Wilkinson

SUMMARYPrevious studies have found that activation of EphB2 and ephrinB1 that drives cell segregation leads to phosphorylation of the phosphoinositide phosphatase SHIP2 downstream of forward (EphB2) but not reverse (ephrinB1) signaling. We have analysed whether SHIP2 interacts with EphB2 and contributes to cell responses to EphB2-ephrinB1 signaling. We confirm that EphB2 activation leads to SHIP2 phosphorylation on Y1135 and find that they interact through the SH2 domain of SHIP2. There is thus a distinct mode of interaction from EphA2, which binds SHIP2 via its SAM domain. Knockdown of SHIP2 in EphB2 cells leads to decreased segregation from ephrinB1 cells, and a decrease in the repulsion response of EphB2 cells. SHIP2 knockdown in ephrinB1 cells also decreases their repulsion response, but does not disrupt segregation which is largely driven by forward signaling. These findings show that activation of EphB2 leads to recruitment and phosphorylation of SHIP2, and that SHIP2 contributes to cell repulsion responses that underlie cell segregation.

2020 ◽  
Vol 295 (12) ◽  
pp. 3932-3944 ◽  
Author(s):  
Melany J. Wagner ◽  
Marilyn S. Hsiung ◽  
Gerald D. Gish ◽  
Rick D. Bagshaw ◽  
Sasha A. Doodnauth ◽  
...  

Eph receptors are a family of receptor tyrosine kinases that control directional cell movement during various biological processes, including embryogenesis, neuronal pathfinding, and tumor formation. The biochemical pathways of Eph receptors are context-dependent in part because of the varied composition of a heterotypic, oligomeric, active Eph receptor complex. Downstream of the Eph receptors, little is known about the essential phosphorylation events that define the context and instruct cell movement. Here, we define a pathway that is required for Eph receptor B2 (EphB2)–mediated cell sorting and is conserved among multiple Eph receptors. Utilizing a HEK293 model of EphB2+/ephrinB1+ cell segregation, we found that the scaffold adaptor protein SH2 domain–containing adaptor protein B (Shb) is essential for EphB2 functionality. Further characterization revealed that Shb interacts with known modulators of cytoskeletal rearrangement and cell mobility, including Nck adaptor protein (Nck), p120-Ras GTPase-activating protein (RasGAP), and the α- and β-Chimaerin Rac GAPs. We noted that phosphorylation of Tyr297, Tyr246, and Tyr336 of Shb is required for EphB2–ephrinB1 boundary formation, as well as binding of Nck, RasGAP, and the chimaerins, respectively. Similar complexes were formed in the context of EphA4, EphA8, EphB2, and EphB4 receptor activation. These results indicate that phosphotyrosine-mediated signaling through Shb is essential in EphB2-mediated heterotypic cell segregation and suggest a conserved function for Shb downstream of multiple Eph receptors.


2017 ◽  
Vol 14 (132) ◽  
pp. 20170338 ◽  
Author(s):  
Harriet B. Taylor ◽  
Anaïs Khuong ◽  
Zhonglin Wu ◽  
Qiling Xu ◽  
Rosalind Morley ◽  
...  

Eph receptor and ephrin signalling has a major role in cell segregation and border formation, and may act through regulation of cell adhesion, repulsion or tension. To elucidate roles of cell repulsion and adhesion, we combined experiments in cell culture assays with quantitations of cell behaviour which are used in computer simulations. Cells expressing EphB2, or kinase-inactive EphB2 (kiEphB2), segregate and form a sharp border with ephrinB1-expressing cells, and this is disrupted by knockdown of N-cadherin. Measurements of contact inhibition of locomotion reveal that EphB2-, kiEphB2- and ephrinB1-expressing cells have strong heterotypic and weak homotypic repulsion. EphB2 cells have a transient increase in migration after heterotypic activation, which underlies a shift in the EphB2–ephrinB1 border but is not required for segregation or border sharpening. Simulations with the measured values of cell behaviour reveal that heterotypic repulsion can account for cell segregation and border sharpening, and is more efficient than decreased heterotypic adhesion. By suppressing homotypic repulsion, N-cadherin creates a sufficient difference between heterotypic and homotypic repulsion, and enables homotypic cohesion, both of which are required to sharpen borders.


2021 ◽  
Vol 4 (Supplement_1) ◽  
pp. 6-7
Author(s):  
A Zhang ◽  
Y Pang ◽  
S Menzies ◽  
L M Sly

Abstract Background Intestinal epithelial cells may actively regulate homeostasis by recognizing and responding to extracellular signals. One of these cell types, tuft cells, has been proposed to have a role in secretion, absorption, and reception. However, their role in the intestine has not been fully characterized. We have found that tuft cells express the SH2 domain-containing inositol 5’-phosphatase (SHIP), which was formerly thought to be restricted to hematopoietic cells. SHIP negatively regulates PI3K-mediated cell growth, proliferation, and activation. Tuft cells secrete IL-25, which activates group 2 innate lymphoid cells (ILC2s), leading to type 2 immune responses. Tuft cells may contribute to inflammation in the intestine by increasing ILC2 numbers and/or activation, leading to type II inflammation. Aims My hypothesis is that SHIP inhibits tuft cell responses to innate immune stimuli by limiting PI3K activation. Moreover, SHIP deficiency will increase tuft cell responses to commensal microbes, causing ILC2-mediated type II inflammation. To investigate the role of SHIP in tuft cell responses in vivo, I will use a tuft cell-specific SHIP deficient mouse in the dextran sodium sulfate (DSS)-induced colitis model. Methods We created a mouse deficient in SHIP only in intestinal tuft cells (Fabpcre x SHIPfl/fl) to investigate the impact of SHIP deficiency in tuft cells on responses to luminal microbes. Tuft cell-specific SHIP deficient mice (8-week-old) and their wild type littermates were subjected to DSS-induced colitis for 7 days. Clinical disease activity was monitored daily and gross pathology, including total colon length, was examined at the experimental endpoint. The concentrations of pro-inflammatory type I and type II cytokines were assessed in colonic tissue homogenates via ELISA. Results During DSS-induced colitis, mice with SHIP deficient tuft cells had increased disease activity compared to their wild type littermates, particularly evident in their weight loss. Mice with SHIP deficient tuft cells also had significantly shorter colons than their wild type littermates. IL-25 concentrations (produced by tuft cells) were increased in full thickness colon homogenates from mice with SHIP deficient tuft cells. In contrast, pro-inflammatory cytokines IL-1β, IL-6, and TNF did not differ between genotypes. Thus, increased tuft cell activity due to SHIP deficiency correlated with increased disease severity during DSS-induced colitis. Conclusions SHIP deficiency in intestinal tuft cells leads to increased tuft cell activity and exacerbated colitis during DSS treatment. Tuft cells may contribute to inflammation via IL-25 production, leading to increased type II inflammation by ILC2s. In future studies, we will target IL-25 in this model to determine whether increased tuft cell IL-25 production plays a causal role in disease exacerbation. Funding Agencies NSERC


2019 ◽  
Vol 381 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Zhonglin Wu ◽  
Tim G. Ashlin ◽  
Qiling Xu ◽  
David G. Wilkinson

Blood ◽  
2001 ◽  
Vol 97 (1) ◽  
pp. 221-226 ◽  
Author(s):  
Bernhard Sporri ◽  
Panu E. Kovanen ◽  
Atsuo Sasaki ◽  
Akihiko Yoshimura ◽  
Warren J. Leonard

Abstract JAB/suppressor of cytokine signaling 1 (SOCS1) STAT-induced STAT inhibitor–1 (SSI-1) (JAB/SOCS1/SSI-1) is an SH2-domain–containing protein that is induced by and negatively regulates signaling by a number of cytokines including interleukin-4 (IL-4), IL-6, interferon (IFN)-γ, prolactin, growth hormone, and erythropoietin. The role of JAB/SOCS1/SSI-1 in IL-2 signaling has been analyzed. JAB/SOCS1/SSI-1 is strongly induced by IL-2 in peripheral blood T cells, and JAB/SOCS1/SSI-1 overexpression strongly inhibits IL-2–induced signal transducer and activator of transcription–5 (Stat5) phosphorylation and transcriptional activity. In cotransfection experiments, JAB/SOCS1/SSI-1 associates with both Jak1 and Jak3; however, JAB/SOCS1/SSI-1 had a greater effect on Jak1 tyrosine phosphorylation and kinase activity. JAB/SOCS1/SSI-1 also interacts with IL-2Rβ, and this interaction requires the A region (residues 313-382) of IL-2Rβ. However, this interaction was not essential for the inhibitory action of JAB. Thus, JAB/SOCS1/SSI-1 is an IL-2–induced inhibitor of IL-2 signaling that functions by inhibiting Jak kinase activity. This suggests an important role for JAB/SOCS1/SSI-1 in regulating T-cell responses.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1346
Author(s):  
Priya Veluswamy ◽  
Max Wacker ◽  
Dimitrios Stavridis ◽  
Thomas Reichel ◽  
Hendrik Schmidt ◽  
...  

The SARS-CoV-2 virus causing COVID-19 disease has emerged expeditiously in the world and has been declared pandemic since March 2020, by World Health Organization (WHO). The destructive effects of SARS-CoV-2 infection are increased among the patients with pre-existing chronic conditions and, in particular, this review focuses on patients with underlying cardiovascular complications. The expression pattern and potential functions of SARS-CoV-2 binding receptors and the attributes of SARS-CoV-2 virus tropism in a physio-pathological state of heart and blood vessel are precisely described. Of note, the atheroprotective role of ACE2 receptors is reviewed. A detailed description of the possible detrimental role of SARS-CoV-2 infection in terms of vascular leakage, including endothelial glycocalyx dysfunction and bradykinin 1 receptor stimulation is concisely stated. Furthermore, the potential molecular mechanisms underlying SARS-CoV-2 induced clot formation in association with host defense components, including activation of FXIIa, complements and platelets, endothelial dysfunction, immune cell responses with cytokine-mediated action are well elaborated. Moreover, a brief clinical update on patient with COVID-19 disease with underlying cardiovascular complications and those who had new onset of cardiovascular complications post-COVID-19 disease was also discussed. Taken together, this review provides an overview of the mechanistic aspects of SARS-CoV-2 induced devastating effects, in vital organs such as the heart and vessels.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 462
Author(s):  
Víctor Mayoral-Varo ◽  
María Pilar Sánchez-Bailón ◽  
Annarica Calcabrini ◽  
Marta García-Hernández ◽  
Valerio Frezza ◽  
...  

The role of Src family kinases (SFKs) in human tumors has been always associated with tyrosine kinase activity and much less attention has been given to the SH2 and SH3 adapter domains. Here, we studied the role of the c-Src-SH2 domain in triple-negative breast cancer (TNBC). To this end, SUM159PT and MDA-MB-231 human cell lines were employed as model systems. These cells conditionally expressed, under tetracycline control (Tet-On system), a c-Src variant with point-inactivating mutation of the SH2 adapter domain (R175L). The expression of this mutant reduced the self-renewal capability of the enriched population of breast cancer stem cells (BCSCs), demonstrating the importance of the SH2 adapter domain of c-Src in the mammary gland carcinogenesis. In addition, the analysis of anchorage-independent growth, proliferation, migration, and invasiveness, all processes associated with tumorigenesis, showed that the SH2 domain of c-Src plays a very relevant role in their regulation. Furthermore, the transfection of two different aptamers directed to SH2-c-Src in both SUM159PT and MDA-MB-231 cells induced inhibition of their proliferation, migration, and invasiveness, strengthening the hypothesis that this domain is highly involved in TNBC tumorigenesis. Therefore, the SH2 domain of c-Src could be a promising therapeutic target and combined treatments with inhibitors of c-Src kinase enzymatic activity may represent a new therapeutic strategy for patients with TNBC, whose prognosis is currently very negative.


Lupus ◽  
2019 ◽  
Vol 28 (12) ◽  
pp. 1468-1472 ◽  
Author(s):  
N Yoshida ◽  
F He ◽  
V C Kyttaris

Signal transducer and activator of transcription (STAT) 3 is a regulator of T-cell responses to external stimuli, such as pro-inflammatory cytokines and chemokines. We have previously shown that STAT3 is activated (phosphorylated) at high levels in systemic lupus erythematosus (SLE) T cells and mediates chemokine-induced migration and T:B cell interactions. Stattic, a small molecular STAT3 inhibitor, can partially ameliorate lupus nephritis in mice. To understand the role of STAT3 better in T-cell pathophysiology in lupus nephritis and its potential as a treatment target, we silenced its expression in T cells using a cd4-driven CRE-Flox model. We found that lupus-prone mice that do not express STAT3 in T cells did not develop lymphadenopathy, splenomegaly, or glomerulonephritis. Moreover, the production of anti-dsDNA antibodies was decreased in these mice compared to controls. To dissect the mechanism, we also used a nephrotoxic serum model of nephritis. In this model, T cell–specific silencing of STAT3 resulted in amelioration of nephrotoxic serum-induced kidney damage. Taken together, our results suggest that in mouse models of autoimmune nephritis, T cell–specific silencing of STAT3 can hamper their ability to help B cells to produce autoantibodies and induce cell tissue infiltration. We propose that STAT3 inhibition in T cells represents a novel approach in the treatment of SLE and lupus nephritis in particular.


2020 ◽  
Vol 32 (7) ◽  
pp. 485-491 ◽  
Author(s):  
Michael P Plebanek ◽  
Michael Sturdivant ◽  
Nicholas C DeVito ◽  
Brent A Hanks

Abstract The dendritic cell (DC) is recognized as a vital mediator of anti-tumor immunity. More recent studies have also demonstrated the important role of DCs in the generation of effective responses to checkpoint inhibitor immunotherapy. Metabolic programming of DCs dictates their functionality and can determine which DCs become immunostimulatory versus those that develop a tolerized phenotype capable of actively suppressing effector T-cell responses to cancers. As a result, there is great interest in understanding what mechanisms have evolved in cancers to alter these metabolic pathways, thereby allowing for their continued progression and metastasis. The therapeutic strategies developed to reverse these processes of DC tolerization in the tumor microenvironment represent promising candidates for future testing in combination immunotherapy clinical trials.


Sign in / Sign up

Export Citation Format

Share Document