scholarly journals Structural changes during water-mediated amorphization of semiconducting two-dimensional thiostannates

IUCrJ ◽  
2019 ◽  
Vol 6 (5) ◽  
pp. 804-814 ◽  
Author(s):  
Mathias S. Hvid ◽  
Henrik S. Jeppesen ◽  
Matteo Miola ◽  
Paolo Lamagni ◽  
Ren Su ◽  
...  

Owing to their combined open-framework structures and semiconducting properties, two-dimensional thiostannates show great potential for catalytic and sensing applications. One such class of crystalline materials consists of porous polymeric [Sn3S7 2−] n sheets with molecular cations embedded in-between. The compounds are denoted R-SnS-1, where R is the cation. Dependent on the cation, some R-SnS-1 thiostannates transition into amorphous phases upon dispersion in water. Knowledge about the fundamental chemical properties of the thiostannates, including their water stability and the nature of the amorphous products, has not yet been established. This paper presents a time-resolved study of the transition from the crystalline to the amorphous phase of two violet-light absorbing thiostannates, i.e. AEPz-SnS-1 [AEPz = 1-(2-aminoethyl)piperazine] and trenH-SnS-1 [tren = tris(2-aminoethyl)amine]. X-ray total scattering data and pair distribution function analysis reveal no change in the local intralayer coordination during the amorphization. However, a rapid decrease in the crystalline domain sizes upon suspension in water is demonstrated. Although scanning electron microscopy shows no significant decrease of the micrometre-sized particles, transmission electron microscopy reveals the formation of small particles (∼200–400 nm) in addition to the larger particles. The amorphization is associated with disorder of the thiostannate nanosheet stacking. For example, an average decrease in the interlayer distance (from 19.0 to 15.6 Å) is connected to the substantial loss of the organic components as shown by elemental analysis and X-ray photoelectron spectroscopy. Despite the structural changes, the light absorption properties of the amorphisized R-SnS-1 compounds remain intact, which is encouraging for future water-based applications of such materials.

Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4340
Author(s):  
Han-Wei Chang ◽  
Chia-Wei Su ◽  
Jia-Hao Tian ◽  
Yu-Chen Tsai

Zn-Co-S ball-in-ball hollow sphere (BHS) was successfully prepared by solvothermal sulfurization method. An efficient strategy to synthesize Zn-Co-S BHS consisted of multilevel structures by controlling the ionic exchange reaction was applied to obtain great performance electrode material. Carbon nanotubes (CNTs) as a conductive agent were uniformly introduced with Zn-Co-S BHS to form Zn-Co-S BHS/CNTs and expedited the considerable electrocatalytic behavior toward glucose electro-oxidation in alkaline medium. In this study, characterization with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) was used for investigating the morphological and physical/chemical properties and further evaluating the feasibility of Zn-Co-S BHS/CNTs in non-enzymatic glucose sensing. Electrochemical methods (cyclic voltammetry (CV) and chronoamperometry (CA)) were performed to investigate the glucose sensing performance of Zn-Co-S BHS/CNTs. The synergistic effect of Faradaic redox couple species of Zn-Co-S BHS and unique conductive network of CNTs exhibited excellent electrochemical catalytic ability towards the glucose electro-oxidation, which revealed linear range from 5 to 100 μM with high sensitivity of 2734.4 μA mM−1 cm−2, excellent detection limit of 2.98 μM, and great selectivity in the presence of dopamine, uric acid, ascorbic acid, and fructose. Thus, Zn-Co-S BHS/CNTs would be expected to be a promising material for non-enzymatic glucose sensing.


2011 ◽  
Vol 55-57 ◽  
pp. 1506-1510 ◽  
Author(s):  
Jing Wei ◽  
Xin Tan ◽  
Tao Yu ◽  
Lin Zhao

A series of Y/TiO2nanoparticles (NPs) were synthesized via sol-gel method. The crystal structures, morphologies and chemical properties were characterized using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). We investigated the effects of different doping amounts of Y on the reaction of CO2photoreduction. The results shown that 0.1 wt.%Y/TiO2(0.1YT) performed the highest photocatalytic activity, which yielded 384.62 µmol/g∙cat. formaldehyde after 6 h of UV illumination.


NANO ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. 2050150
Author(s):  
Sifeng Zhang ◽  
Lulu Wang ◽  
Ziguang Zheng ◽  
Yunrui Hei ◽  
Luting Zhou ◽  
...  

In this study, BiOI was successfully synthesized using a hydrothermal method and then modified using hexamethyldisiloxane (HMDS) and polydimethylsiloxane (PDMS), respectively, to achieve a controllable water contact angle (WCA) for these materials. The physical and chemical properties of the modified BiOI were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) method, UV–Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy and water contact angle (WCA) techniques. Compared with the unmodified BiOI, HMDS- and PDMS-modified BiOI had higher photocatalytic activities for 17[Formula: see text]-ethinylestradiol (EE2) under visible light irradiation for 28 min after reacting in dark for 30 min. When BiOI was modified using HMDS and PDMS, the WCA increased. When the WCA of HMDS- and PDMS-modified BiOI was controlled in the range of 25.3–32.7[Formula: see text] and 38.1–78.5[Formula: see text], respectively, better photocatalytic performances were achieved. When the WCA of modified BiOI was 29.7[Formula: see text] (1.00[Formula: see text]mL HMDS) and 47.8[Formula: see text] (0.20[Formula: see text]mL PDMS), the best photocatalytic performances were achieved with EE2 removal rate of 98.85% and 98.72%, respectively, however, the removal rate of the unmodified BiOI was 85.01%. The reaction rate constants of BiOI (1.00[Formula: see text]mL HMDS) and BiOI (0.20[Formula: see text]mL PDMS) were 2.33 and 2.15 times higher than the unmodified BiOI, respectively. The improved catalytic performances of modified BiOI could be attributed to the synergistic effect of the controlled wettability of BiOI and functional groups on the surface of photocatalysts.


2019 ◽  
Vol 6 (1) ◽  
pp. 26 ◽  
Author(s):  
Shubham Sharma ◽  
Swarna Jaiswal ◽  
Brendan Duffy ◽  
Amit Jaiswal

Nanotechnology deals with matter of atomic or molecular scale. Other factors that define the character of a nanoparticle are its physical and chemical properties, such as surface area, surface charge, hydrophobicity of the surface, thermal stability of the nanoparticle and its antimicrobial activity. A nanoparticle is usually characterized by using microscopic and spectroscopic techniques. Microscopic techniques are used to characterise the size, shape and location of the nanoparticle by producing an image of the individual nanoparticle. Several techniques, such as scanning electron microscopy (SEM), transmission electron microscopy/high resolution transmission electron microscopy (TEM/HRTEM), atomic force microscopy (AFM) and scanning tunnelling microscopy (STM) have been developed to observe and characterise the surface and structural properties of nanostructured material. Spectroscopic techniques are used to study the interaction of a nanoparticle with electromagnetic radiations as the function of wavelength, such as Raman spectroscopy, UV–Visible spectroscopy, attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), dynamic light scattering spectroscopy (DLS), Zeta potential spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray photon correlation spectroscopy. Nanostructured materials have a wide application in the food industry as nanofood, nano-encapsulated probiotics, edible nano-coatings and in active and smart packaging.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1253
Author(s):  
Siti Aishah Anuar ◽  
Khairul Naim Ahmad ◽  
Ahmed Al-Amiery ◽  
Mohd Shahbudin Masdar ◽  
Wan Nor Roslam Wan Isahak

The presence of CO2 in gaseous fuel and feedstock stream of chemical reaction was always considered undesirable. High CO2 content will decrease quality and heating value of gaseous fuel, such as biohydrogen, which needs a practical approach to remove it. Thus, this work aims to introduce the first C3N4-metal oxide hybrid for the CO2 cleaning application from a mixture of CO2-H2 gas. The samples were tested for their chemical and physical properties, using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), physical adsorption analysis (BET), fourier-transform infrared (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The CO2 capacity test was carried out by means of a breakthrough test at 1 atm and 25° C using air as a desorption system. Among the samples, amine/metal oxide mass ratio of 2:1 (CNHP500-2(2-1)) showed the best performance of 26.9 wt. % (6.11 mmol/g), with a stable capacity over 6 consecutive cycles. The hybrid sample also showed 3 times better performance than the raw C3N4. In addition, it was observed that the hydrothermal C3N4 synthesis method demonstrated improved chemical properties and adsorption performance than the conventional dry pyrolysis method. In summary, the performance of hybrid samples depends on the different interactive factors of surface area, pore size and distribution, basicity, concentration of amine precursors, ratio of amines precursors to metal oxide, and framework stability.


2018 ◽  
Vol 89 (7) ◽  
pp. 1332-1339
Author(s):  
Yehua Sun ◽  
Yuzhuo Luo ◽  
Yaofeng Zhu ◽  
Yaqin Fu

Biomass-derived silk fibroin (SF)-doped NaTaO3 catalysts were successfully synthesized by a simple hydrothermal process using SF as the dopant. The as-prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS) analyses. The samples were tested as photocatalysts in the degradation of methylene blue under UV and visible light. XRD results showed the monoclinic structure of NaTaO3 lacking significant structural changes after anion doping. SEM and TEM images revealed the nanocubic morphology of the samples, the crystal particle sizes of which were about 100–300 nm. The XPS spectrum showed the peak of Ta4p3&N1s, indicating the combination of N and Ta. The UV-vis DRS results of the samples revealed a cut-off edge that red shifted from 315 nm of the pure NaTaO3 to 324 nm of the SF-doped counterpart. SF doping helped narrow the band gap and rendered the prepared sample sensitive to visible light. Under UV and visible-light irradiation, SF-doped NaTaO3 exhibited higher photocatalytic activity than that the undoped compound. SF-doped NaTaO3 samples also exhibited excellent stability during the recycling photocatalytic process.


2015 ◽  
Vol 08 (01) ◽  
pp. 1550007 ◽  
Author(s):  
Serge Zhuiykov ◽  
Eugene Kats ◽  
Tomoaki Sato ◽  
Hiroshi Ikeda ◽  
Norio Miura

Quasi-two-dimensional (Q2D) Nb 2 O 5 nanoflakes were synthesized by combined sol–gel/exfoliation method with the average thickness of 10–25 nm. Their structural, surface- and electro-chemical properties were closely studied and analyzed by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), conductive atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques.


Membranes ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 33 ◽  
Author(s):  
Yousef Alqaheem ◽  
Abdulaziz A. Alomair

Polymeric membrane is a proven technology for water purification and wastewater treatment. The membrane is also commercialized for gas separation, mainly for carbon dioxide removal and hydrogen recovery. Characterization techniques are excellent tools for exploring the membrane structure and the chemical properties. This information can be then optimized to improve the membrane for better performance. In this paper, characterization techniques for studying the physical structure such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) are discussed. Techniques for investigating the crystal structure such as X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and wide-angle X-ray scattering (WAXS) are also considered. Other tools for determining the functional groups such Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and nuclear magnetic resonance (NMR) are reviewed. Methods for determining the elemental composition such as energy-dispersion X-ray spectroscopy (EDS), X-ray fluorescent (XRF), and X-ray photoelectron spectroscopy (XPS) are explored. The paper also gives general guidelines for sample preparation and data interpretation for each characterization technique.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4975
Author(s):  
Piotr Kamedulski ◽  
Stanislaw Truszkowski ◽  
Jerzy P. Lukaszewicz

The design and fabrication of a new effective manufacturing method of heteroatom-doped carbon materials is still ongoing. In this paper, we present alternative and facile methods to obtain N-rich graphene with the use of low energy gamma radiation. This method was used as a pure and facile method for altering the physical and chemical properties of graphene. The obtained materials have an exceptionally high N content—up to 4 wt %. (dry method) and up to 2 wt %. (wet method). High-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra and X-ray photoelectron spectroscopy (XPS) studies allowed us to evaluate the quality of the obtained materials. The presented results will provide new insights in designing and optimizing N-doped carbon materials potentially for the development of anode or cathode materials for electrochemical device applications, especially supercapacitors, metal–air batteries and fuel cells. Nitrogen atoms are exclusively bonded as quaternary groups. The method is expandable to the chemical insertion of other heteroatoms to graphene, especially such as sulfur, boron or phosphorus.


2006 ◽  
Vol 132 ◽  
pp. 87-90
Author(s):  
M. El Kazzi ◽  
G. Delhaye ◽  
S. Gaillard ◽  
E. Bergignat ◽  
G. Hollinger

Sign in / Sign up

Export Citation Format

Share Document