Two furan-2,5-dicarboxylic acid solvates crystallized from dimethylformamide and dimethyl sulfoxide

2018 ◽  
Vol 74 (8) ◽  
pp. 986-990 ◽  
Author(s):  
Yimin Mao ◽  
Peter Y. Zavalij

Furan-2,5-dicarboxylic acid (FDCA) has been ranked among the top 12 bio-based building-block chemicals by the Department of Energy in the US. The molecule was first synthesized in 1876, but large-scale production has only become possible since the development of modern bio- and chemical catalysis techniques. The structures of two FDCA solvates, namely, FDCA dimethylformamide (DMF) disolvate, C6H4O5·2C3H7NO, (I), and FDCA dimethyl sulfoxide (DMSO) monosolvate, C6H4O5·C2H6OS, (II), are reported. Solvate (I) crystallizes in the orthorhombic Pbcn space group and solvate (II) crystallizes in the triclinic P\overline{1} space group. In (I), hydrogen bonds form between the carbonyl O atom in DMF and a hydroxy H atom in FDCA. Whilst in (II), the O atom in one DMSO molecule hydrogen bonds with hydroxy H atoms in two FDCA molecules. Combined with intermolecular S...O interactions, FDCA molecules form a two-dimensional network coordinated by DMSO.

2020 ◽  
Vol 22 (6) ◽  
pp. 2069-2076
Author(s):  
Shen Cheng ◽  
Wei Wei ◽  
Xingyu Zhang ◽  
Hewei Yu ◽  
Mingming Huang ◽  
...  

Dimethyl sulfone (DMSN or MSM) was prepared via efficient oxidation of dimethyl sulfoxide and used and developed as an efficient, viscose, and recyclable solvent for ligand-free CuI-catalyzed Heck, Suzuki, and Sonogashira cross-coupling reactions.


Foods ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1592
Author(s):  
Vishal Ahuja ◽  
Markéta Macho ◽  
Daniela Ewe ◽  
Manoj Singh ◽  
Subhasish Saha ◽  
...  

Xylitol is a white crystalline, amorphous sugar alcohol and low-calorie sweetener. Xylitol prevents demineralization of teeth and bones, otitis media infection, respiratory tract infections, inflammation and cancer progression. NADPH generated in xylitol metabolism aid in the treatment of glucose-6-phosphate deficiency-associated hemolytic anemia. Moreover, it has a negligible effect on blood glucose and plasma insulin levels due to its unique metabolism. Its diverse applications in pharmaceuticals, cosmetics, food and polymer industries fueled its market growth and made it one of the top 12 bio-products. Recently, xylitol has also been used as a drug carrier due to its high permeability and non-toxic nature. However, it become a challenge to fulfil the rapidly increasing market demand of xylitol. Xylitol is present in fruit and vegetables, but at very low concentrations, which is not adequate to satisfy the consumer demand. With the passage of time, other methods including chemical catalysis, microbial and enzymatic biotransformation, have also been developed for its large-scale production. Nevertheless, large scale production still suffers from high cost of production. In this review, we summarize some alternative approaches and recent advancements that significantly improve the yield and lower the cost of production.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (5) ◽  
pp. 66-68
Author(s):  
V. David

Ames Laboratory, operated by Iowa State University for the U.S. Department of Energy (DOE), was established in 1947 to conduct basic research with particular emphasis on new materials.Like the other national laboratories, Ames Laboratory was created in consequence of contributions made to the Manhattan Project. It was in Ames, early in World War II, that two college professors and a group of graduate students resolved a problem that had proved intractable to industry. Within months of Pearl Harbor, Frank Spedding and Harley Wilhelm devised a practical method for the large-scale production of pure uranium. While teaching industry how to do it, Ames furnished 1,000 tons of uranium for the Manhattan Project.In the postwar years, processes were developed at Ames Laboratory for the production of metals such thorium, vanadium, and chromium that were considered exotic at the time. The processes were adopted by industry and most are still in use today.Based on Spedding's earlier research, a pilot plant was built at Ames that produced 100-pound batches of the 15 rare earth elements in unprecedented purity. To tap a research source of 15 new metals, for these elements were hardly known before, would have been a triumph; but because each one in this family of the “fraternal fifteen” differs from its neighbor by a single electron, the research prospect revealed was virtually unbounded.


1993 ◽  
Vol 32 (1) ◽  
pp. 129-131
Author(s):  
Naureen Talha

The literature on female labour in Third World countries has become quite extensive. India, being comparatively more advanced industrially, and in view of its size and population, presents a pictures of multiplicity of problems which face the female labour market. However, the author has also included Mexico in this analytical study. It is interesting to see the characteristics of developing industrialisation in two different societies: the Indian society, which is conservative, and the Mexican society, which is progressive. In the first chapter of the book, the author explains that he is not concerned with the process of industrialisation and female labour employed at different levels of work, but that he is interested in forms of production and women's employment in large-scale production, petty commodity production, marginal small production, and self-employment in the informal sector. It is only by analysis of these forms that the picture of females having a lower status is understood in its social and political setting.


2018 ◽  
Vol 15 (4) ◽  
pp. 572-575 ◽  
Author(s):  
Ponnusamy Kannan ◽  
Samuel I.D. Presley ◽  
Pallikondaperumal Shanmugasundaram ◽  
Nagapillai Prakash ◽  
Deivanayagam Easwaramoorthy

Aim and Objective: Itopride is a prokinetic agent used for treating conditions like non-ulcer dyspepsia. Itopride is administered as its hydrochloride salt. Trimethobenzamide is used for treating nausea and vomiting and administered as its hydrochloride salt. The aim is to develop a novel and environmental friendly method for large-scale production of itopride and trimethobenzamide. Materials and Methods: Itopride and trimethobenzamide can be prepared from a common intermediate 4- (dimethylaminoethoxy) benzyl amine. The intermediate is prepared from one pot synthesis using Phyrdroxybenzaldehye and zinc dust and further reaction of the intermediate with substituted methoxy benzoic acid along with boric acid and PEG gives itopride and trimethobenzamide. Results: The intermediate 4-(dimethylaminoethoxy) benzylamine is prepared by treating p-hydroxybenzaldehyde and 2-dimethylaminoethyl chloride. The aldehyde formed is treated with hydroxylamine hydrochloride. The intermediate is confirmed by NMR and the purity is analysed by HPLC. Conclusion: Both itopride and trimethobenzamide were successfully synthesized by this method. The developed method is environmental friendly, economical for large-scale production with good yield and purity.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 241
Author(s):  
Shaden A. M. Khalifa ◽  
Eslam S. Shedid ◽  
Essa M. Saied ◽  
Amir Reza Jassbi ◽  
Fatemeh H. Jamebozorgi ◽  
...  

Cyanobacteria are photosynthetic prokaryotic organisms which represent a significant source of novel, bioactive, secondary metabolites, and they are also considered an abundant source of bioactive compounds/drugs, such as dolastatin, cryptophycin 1, curacin toyocamycin, phytoalexin, cyanovirin-N and phycocyanin. Some of these compounds have displayed promising results in successful Phase I, II, III and IV clinical trials. Additionally, the cyanobacterial compounds applied to medical research have demonstrated an exciting future with great potential to be developed into new medicines. Most of these compounds have exhibited strong pharmacological activities, including neurotoxicity, cytotoxicity and antiviral activity against HCMV, HSV-1, HHV-6 and HIV-1, so these metabolites could be promising candidates for COVID-19 treatment. Therefore, the effective large-scale production of natural marine products through synthesis is important for resolving the existing issues associated with chemical isolation, including small yields, and may be necessary to better investigate their biological activities. Herein, we highlight the total synthesized and stereochemical determinations of the cyanobacterial bioactive compounds. Furthermore, this review primarily focuses on the biotechnological applications of cyanobacteria, including applications as cosmetics, food supplements, and the nanobiotechnological applications of cyanobacterial bioactive compounds in potential medicinal applications for various human diseases are discussed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1940
Author(s):  
Muhammad Usman Naseer ◽  
Ants Kallaste ◽  
Bilal Asad ◽  
Toomas Vaimann ◽  
Anton Rassõlkin

This paper presents current research trends and prospects of utilizing additive manufacturing (AM) techniques to manufacture electrical machines. Modern-day machine applications require extraordinary performance parameters such as high power-density, integrated functionalities, improved thermal, mechanical & electromagnetic properties. AM offers a higher degree of design flexibility to achieve these performance parameters, which is impossible to realize through conventional manufacturing techniques. AM has a lot to offer in every aspect of machine fabrication, such that from size/weight reduction to the realization of complex geometric designs. However, some practical limitations of existing AM techniques restrict their utilization in large scale production industry. The introduction of three-dimensional asymmetry in machine design is an aspect that can be exploited most with the prevalent level of research in AM. In order to take one step further towards the enablement of large-scale production of AM-built electrical machines, this paper also discusses some machine types which can best utilize existing developments in the field of AM.


Author(s):  
Yuting Luo ◽  
Zhiyuan Zhang ◽  
Fengning Yang ◽  
Jiong Li ◽  
Zhibo Liu ◽  
...  

Large-scale production of green hydrogen by electrochemical water splitting is considered as a promising technology to address critical energy challenges caused by the extensive use of fossil fuels. Although nonprecious...


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Rozina Rashid ◽  
Muhammad Sohail

AbstractThe capacity of different Bacillus species to produce large amounts of extracellular enzymes and ability to ferment various substrates at a wide range of pH and temperature has placed them among the most promising hosts for the industrial production of many improved and novel products. The global interest in prebiotics, for example, xylooligosaccharides (XOs) is ever increasing, rousing the quest for various forms with expanded productivity. This article provides an overview of xylanase producing bacilli, with more emphasis on their capacity to be used in the production of the XOs, followed by the purification strategies, characteristics and application of XOs from bacilli. The large-scale production of XOs is carried out from a number of xylan-rich lignocellulosic materials by chemical or enzymatic hydrolysis followed by purification through chromatography, vacuum evaporation, solvent extraction or membrane separation methods. Utilization of XOs in the production of functional products as food ingredients brings well-being to individuals by improving defense system and eliminating pathogens. In addition to the effects related to health, a variety of other biological impacts have also been discussed.


Sign in / Sign up

Export Citation Format

Share Document