Synthesis, structure and in vitro biological properties of a new copper(II) complex with 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid

Author(s):  
Xinhua Li ◽  
Mengyuan Niu ◽  
Ai Wang ◽  
Liping Lu ◽  
Ulli Englert ◽  
...  

The new copper(II) complex dichloridobis(4-{[3-(pyridin-2-yl-κN)-1H-pyrazol-1-yl-κN 2]methyl}benzoic acid)copper(II) methanol sesquisolvate hemihydrate, [CuCl2 L 2]·1.5CH3OH·0.5H2O, (1), has been synthesized from CuCl2·2H2O and the ligand 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid (L, C15H11N3O2). The complex was characterized by elemental analysis, Fourier transform IR spectroscopy, electrospray ionization mass spectrometry and single-crystal X-ray diffraction. Two chloride ligands and two bidentate L ligands coordinate the CuII centre in 1 in a Jahn–Teller-distorted octahedral geometry of rather unusual configuration: a chloride substituent and a pyrazole N atom of an N,N′-chelating ligand occupy the more distant axial positions. Classical O—H...O hydrogen bonds and O—H...Cl interactions link neighbouring complex molecules and cocrystallized methanol molecules into chains that propagate parallel to the b direction. The title compound shows intriguing bioactivity: the effects of 1 on the enzymatic activity of protein tyrosine phosphatase 1B (PTP1B) and on the viability of human breast cancer cells of cell line MCF7 were evaluated. Complex 1, with an IC50 value of 0.51 µM, can efficiently inhibit PTP1B activity. An enzyme kinetic assay suggests that 1 inhibits PTP1B in a noncompetitive manner. A fluorescence titration assay indicates that 1 has a strong affinity for PTP1B, with a binding constant of 4.39 × 106 M −1. Complex 1 may also effectively decrease the viability of MCF7 cells in an extent comparable to that of cisplatin (IC50 = 6.3 µM). The new copper complex therefore represents a promising PTP1B inhibitor and an efficient antiproliferation reagent against MCF7 cells.

Author(s):  
Monika Rakse ◽  
Chandrabose Karthikeyan ◽  
Narayana Subbiah Hari Narayana Moorthy ◽  
Ram Kishore Agrawal

Background: Protein Tyrosine Phosphatase 1B (PTP1B) is an attractive target for antidiabetic drug discovery owing to its pivotal role as a negative regulator of insulin and leptin signaling. Objective: The objective of this research is to design, synthesize, and evaluate some acetamido benzoic acid derivatives as a novel class of protein tyrosine phosphatase 1B inhibitors with therapeutic potential for Type II diabetes. Methods: 3-(2-(benzo[d]thiazol-2-ylthio)acetamido)benzoic acid derivatives 4(a-j) were synthesized and characterized by employing spectral studies. All the synthesized compounds were screened for in vitro PTP1B inhibitory activity and the most potent compound in the series was also evaluated for in vivo anti-hyperglycemic activity using STZ induced diabetic Wistar rat model. Molecular docking studies were also performed with the most potent analog using FlexX docking algorithm to delineate its binding mode to the active site of the PTP1B. Results and Discussion: Among all the synthesized compounds, 3-(2-(benzo[d]thiazol-2-ylthio)acetamido)-4- methylbenzoic acid (4f) displayed good PTP1B inhibitory activity with an IC50 value of 11.17 μM. The compound also exhibited good anti-hyperglycemic efficacy in streptozotocin induced diabetic Wistar rats. Docking studies with 4f revealed the compound bound in the catalytic and second aryl binding site of the PTP1B. Conclusion: Overall, compound 4f with good in vitro PTP1B inhibitory potency and in vivo antihyperglycemic efficacy would be a valuable lead molecule for the development of acetamido benzoic acid based PTP1B inhibitors with antidiabetic potential.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 448-448
Author(s):  
Hui Gyu Park ◽  
Jae Hun Kim ◽  
Andrew N Dancer ◽  
Kumar S Kothapalli ◽  
J Thomas Brenna

Abstract Objectives Our main aim is to test the effect of estrogen and antiestrogen (letrozole) on the modulation of fatty acid desaturation and ScA levels in vitro using human cancer cells. Methods We used two sets of cells, MCF7 cells stably expressing FADS1 and FADS2 genes and a series of wild type (MCF7, HepG2, SK-N-SH, Caco2 and Y79) cancer cells. Cells were treated with estrogen (0 to 200 ppm) or letrozole (0 to 100 ppm) at the time of seeding and at confluence 50 μM albumin bound 20:2n-6 was added to FBS-free media. FAME was quantified by GC-flame ionization detector (GC-FID) and structures were identified by gas chromatography (GC) – covalent adduct chemical ionization mass spectrometry (CACI-MS/MS). Results Estrogen caused a dose dependent decrease in ScA via apparent inhibition of FADS1 activity in all wild type and had no effect on FADS2 (Δ8 desaturation) mediated synthesis of DGLA. In MCF7 cells, letrozole caused a dose dependent increase in FADS2 catalyzed DGLA and a decrease in ScA. Conclusions We provide the first biochemical evidence demonstrating MCF7 cells treated with letrozole increase DGLA, the immediate precursor to the anti-inflammatory eicosanoid PGE1. Letrozole is the first hormone-active agent to have opposing effects on FADS1 and FADS2. Funding Sources NIH grant R01 AT007003.


2018 ◽  
Vol 8 (3) ◽  
pp. 193 ◽  
Author(s):  
Rosa Martha Perez Gutierrez ◽  
Alethia Muñiz-Ramirez ◽  
Abraham Heriberto Garcia Campoy ◽  
Jose Maria Mota Flores ◽  
Sergio Odin Flores

Background: The health benefits of edible plants have been widely investigated and disseminated. However, only polyphenols have been found to have sufficient therapeutic potential to be considered in clinical trials. Fewer manuscripts have other applications such as prospective health benefits and disease treatment. Other components of edible plants are responsible for a range of other benefits including antimalarial, burns, flu, cancer, inflammation, diabetes, glycation, antimicrobial, prevention of neurodegeneration, analgesic, antimigraine activity, sedative activities, etc. Accordingly, the public needs to be informed of the potential edible plants have to act on different targets and maintain better control over diabetes compared to commercial drugs which can be toxic, have side effects, do not have the capacity to maintain blood glucose at normal levels, and do not protect the patient from the complications of diabetes over time. Consequently, edible plants, such as Apium graveolen, which have therapeutic targets on AGEs formation, are potentially a better alternative treatment for diabetes.Methods: The leaves of celery were extracted with methanol (CM). Polyphenols contents in CM were investigated by liquid chromatography-electrospray ionization mass. The ability of the compounds to inhibit formation of AGEs was evaluated in vitro models using formation of AGE fluorescence intensity, level of fructosamine, Nε-(carboxymethyl)lysine (CML), methylglyoxal (MG)-derived protein, and formation of amyloid cross β structure. Protein-oxidation was determined by thiol group and protein carbonyl content. Inhibition of MG-derived AGEs and MG-trapping ability were also measured. Additionally, insulin production was determined in methylglyoxal-treated pancreatic RINm5F cells assay. Results: Apigenin, kaempferol, apiin, rutin, caffeic acid, ferulic acid, chlorogenic acid, coumaroylquinic acid, and p-coumaric acid were the major polyphenols contained in CM. In all the model tests CM displayed potent AGE inhibitory activity, suggesting that CM delayed the three stages of glycation. Accordingly, the mechanisms of action of celery involving dicarbonyl trapping and breaking the crosslink structure in the AGEs formed may contribute to the protection of pancreatic RINm5F cells against MG conditions.Conclusion: These findings indicate that CM have an excellent anti-glycation effect which may be beneficial for future development of antiglycating agents for the treatment of diabetes.Keywords: Apium graveolens, anti-glycation, polyphenols methylglyoxal, insulin, pancreatic cells


2018 ◽  
Vol 69 (6) ◽  
pp. 1416-1418
Author(s):  
Alexandru Szabo ◽  
Ilare Bordeasu ◽  
Ion Dragos Utu ◽  
Ion Mitelea

Hydroxyapatite (HA) is a very common material used for biomedical applications. Usually, in order to improve its poor mechanical properties is combined or coated with other high-strength materials.The present paper reports the manufacturing and the biocompatibility behaviour of two different biocomposite coatings consisting of alumina (Al2O3) and hydroxyapatite (HA) using the high velocity oxygen fuel (HVOF) spraying method which were deposited onto the surface of a commercially pure titanium substrate. The biological properties of the Al2O3-HA materials were evaluated by in vitro studies. The morphology of the coatings before and after their immersing in the simulated body fluid (SBF) solution was characterized by scanning electron microscopy (SEM). The results showed an important germination of the biologic hydroxyapatite crystallite on the surface of both coatings.


2020 ◽  
Vol 28 ◽  
Author(s):  
Justyna Hajtuch ◽  
Karolina Niska ◽  
Iwona Inkielewicz-Stepniak

Background: Cancer along with cardiovascular diseases are globally defined as leading causes of death. Importantly, some risk factors are common to these diseases. The process of angiogenesis and platelets aggregation are observed in cancer development and progression. In recent years, studies have been conducted on nanodrugs in these diseases that have provided important information on the biological and physicochemical properties of nanoparticles. Their attractive features are that they are made of biocompatible, well-characterized and easily functionalized materials. Unlike conventional drug delivery, sustained and controlled drug release can be obtained by using nanomaterials. Methods: In this article, we review the latest research to provide comprehensive information on nanoparticle-based drugs for the treatment of cancer, cardiovascular disease associated with abnormal haemostasis, and the inhibition of tumorassociated angiogenesis. Results: The results of the analysis of data based on nanoparticles with drugs confirm their improved pharmaceutical and biological properties, which gives promising antiplatelet, anticoagulant and antiangiogenic effects. Moreover, the review included in vitro, in vivo research and presented nanodrugs with chemotherapeutics approved by Food and Drug Administration. Conclusion: By the optimization of nanoparticles size and surface properties, nanotechnology are able to deliver drugs with enhanced bioavailability in treatment of cardiovascular disease, cancer and inhibition of cancer-related angiogenesis. Thus, nanotechnology can improve the therapeutic efficacy of the drug, but there is a need for a better understanding of the nanodrugs interaction in the human body, because this is a key factor in the success of potential nanotherapeutics.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2020 ◽  
Vol 17 (12) ◽  
pp. 939-943
Author(s):  
Toshiro Noshita ◽  
Yusuke Kakizoe ◽  
Satoshi Tanabe ◽  
Hidekazu Ouchi ◽  
Akihiro Tai

Extracts of Carolina jasmine (Gelsemium sempervirens (L.) J.St.-Hil.) petals were evaluated in vitro for inhibition activity against protein tyrosine phosphatase 1B (PTP1B). The principle active agent was also isolated from the extract and identified as ursolic acid (1). This is the first report of ursolic acid from G. sempervirens and of PTP1B-inhibiting activity in the genus Gelsemium.


2020 ◽  
Vol 16 (1) ◽  
pp. 65-74
Author(s):  
Ortensia Ilaria Parisi ◽  
Mariarosa Ruffo ◽  
Fabio Amone ◽  
Rocco Malivindi ◽  
Domenico Gorgoglione ◽  
...  

Background: The Rotonda’s Red Eggplant belongs to the family of Solanum aethiopicum and it is cultivated in a specific area of Potenza (Basilicata, South of Italy) including villages of Rotonda, Viggianello, Castelluccio Superiore and Castelluccio Inferiore. The Red Eggplant cultivated in this area has gained the PDO, “Protected Designation of Origin”. Objective: The aim of this research was to evaluate the use of PDO Rotonda’s Red Eggplant extract as a possible nutraceutical supplement. The antioxidant, antihypertensive, hypoglycemic, and hypolipidemic properties were in vitro evaluated. Methods: The antioxidant activity was investigated by evaluating the scavenging properties against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals and by performing the Ammonium Molybdate and Folin-Ciocalteu assay. The hypoglycemic and antihypertensive activity was studied by evaluating the α-Amylase, α-Glucosidase and Angiotensin Converting Enzyme, respectively, inhibiting activity. In order to evaluate the hypolipidemic activity, the pancreatic lipase inhibiting property was determined and Oil Red O staining assay was performed. Finally, to evaluate the possible use of this extract as a minerals supplement, Selenium, Potassium and Chrome bioaccessibility was studied. Results: The obtained results underline the good antioxidant, hypoglycemic, antihypertensive and hypolipidemic in vitro properties of the PDO Rotonda’s Red Eggplant extract. Moreover, the obtained data show a higher minerals bioaccessibility and this higher value could be ascribable to the natural phytocomplex of PDO Rotonda’s Red Eggplant, which increases the minerals bioaccessibility if compare it with a control sample. Conclusion: The obtained results show that PDO Rotonda’s Red Eggplant extract, might be used as a possible nutraceutical supplement, along with traditional therapies, both for its biological properties and for its minerals bioaccessibility value.


2019 ◽  
Vol 15 (4) ◽  
pp. 373-382 ◽  
Author(s):  
Ralph C. Gomes ◽  
Renata P. Sakata ◽  
Wanda P. Almeida ◽  
Fernando Coelho

Background: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 µM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 µM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.


Sign in / Sign up

Export Citation Format

Share Document