scholarly journals Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions

2018 ◽  
Vol 74 (5) ◽  
pp. 466-480 ◽  
Author(s):  
C. Li ◽  
G. Habler ◽  
T. Griffiths ◽  
A. Rečnik ◽  
P. Jeřábek ◽  
...  

The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl2O4 layers have been grown between Al2O3 and MgO, and the atomic structure of Al2O3/MgAl2O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (h.c.p.) stacking in Al2O3 to cubic close-packed (c.c.p.) stacking in MgAl2O4. Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2O3/MgAl2O4 interface into Al2O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent Σ3 grain boundaries form. The newly grown MgAl2O4 grains compete with each other, leading to a growth selection and successive coarsening of the MgAl2O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar h.c.p./c.c.p. transition.

2016 ◽  
Vol 18 (9) ◽  
pp. 2619-2624 ◽  
Author(s):  
Maryam Moradi ◽  
Jae Chul Kim ◽  
Jifa Qi ◽  
Kang Xu ◽  
Xin Li ◽  
...  

Bio-facilitated solid state solution: we investigate an energy-efficient synthesis that merges the bio-templated technique and solid-state reactions to produce a wide range of nano-structured complex inorganic materials.


2009 ◽  
Vol 24 (7) ◽  
pp. 2191-2199 ◽  
Author(s):  
James P. Buban ◽  
Miaofang Chi ◽  
Daniel J. Masiel ◽  
John P. Bradley ◽  
Bin Jiang ◽  
...  

Using a spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS), we investigated a 6° low-angle [001] tilt grain boundary in SrTiO3. The enhanced spatial resolution of the aberration corrector leads to the observation of a number of structural variations in the edge dislocations along the grain boundary that neither resemble the standard edge dislocations nor partial dislocations for SrTiO3. Although there appear to be many variants in the structure that can be interpreted as compositional effects, three main classes of core structure are found to be prominent. From EELS analysis, these classifications seem to be related to Sr deficiencies, with the final variety of the cores being consistent with an embedded TiOx rocksalt-like structure.


2008 ◽  
Vol 273-276 ◽  
pp. 99-104
Author(s):  
Csaba Cserháti ◽  
Györgyi Glodán ◽  
A. Csik ◽  
G.A. Langer ◽  
Z. Erdélyi ◽  
...  

Solid state reactions between amorphous Si and crystalline Co have been investigated by 4W electrical resistance and TEM. Multilayered (with 10 periods of 5nm a-Si/5nm Co and 10 nma- Si/10nm Co layers) as well as tri-layered samples (20nm a-Si/3nmCoSi/6nm Co) were produced by magnetron sputtering and isothermally heat treated at different temperatures between 473 and 523K. From the time evolution of the normalized resistance the kinetics of the process were determined by fitting a power law, tk, and k was between 0.8 and 1. Possibility of the interface reaction control and/or the effect of the diffusion asymmetry (which was recently published for the non-parabolic interface shifts on the nanoscale) will be discussed.


2008 ◽  
Vol 277 ◽  
pp. 3-8
Author(s):  
Z. Balogh ◽  
Csaba Cserháti ◽  
Z. Erdélyi ◽  
A. Csik ◽  
G.A. Langer ◽  
...  

Solid state reactions between amorpous Si and crystalline Co have been investigated by synchrotron radiation at Bessy (Berlin, Germany). The multilayered samples (with 10 periods of a-Si(15 nm)/Co(15 nm) layers) were produced by magnetron sputtering and isothermally heat treated at temperatures between 523 and 593 K. From the time evolution of the XRD spectra first the growth rate of the CoSi phase as well as the decay rate of the Co layer we determined (at 523 and 543 K). The kinetics were described by a power law; tk, and for the growth of CoSi k=0.65 while for the loss of the Co the k=0.77 was obtained, respectively. At higher temperatures (at 573 and 593 K) the formation and growth of the Co2Si layer, at the expense of the Co and already existing CoSi layers, was observed with exponents of about 1 for all the above kinetics. These results, together with the results of resistance kinetics measurements, in similar multilayered as well as bi-layered samples at similar temperatures, providing similar exponents will be presented. Possibility of the interface reaction control and/or the effect of the diffusion asymmetry (which was recently published for the interpretation of solid state reactions with non-parabolic kinetics on the nanoscale) will be discussed.


2009 ◽  
Vol 7 ◽  
pp. 43-49 ◽  
Author(s):  
Dezső L. Beke ◽  
Z. Erdélyi ◽  
Z. Balogh ◽  
Csaba Cserháti ◽  
G.L. Katona

In a set of recent papers we have shown that the diffusion asymmetry in diffusion couples (the diffusion coefficient is orders of magnitude larger in one of the parent materials) leads to interesting phenomena: i) sharp interface remains sharp and shifts with non Fickian (anomalous) kinetics [1-5], ii) originally diffuse interface sharpens even in ideal (completely miscible) systems [6,7], iii) an initially existing thin AB phase in A/AB/B diffusion couple can be dissolved [8], iv) there exists a crossover thickness (typically between few nanometers and 1m) above which the interface shift turns back to the Fickian behaviour [9], v) the growth rate of a product of solid state reaction can be linear even if there is no any extra potential barrier present (which is the classical interpretation of the “interface reaction control” for linear kinetics) [10]. These latter results will be summarized and reformulated according to the usual expression for linear-parabolic law containing the interdiffusion coefficient, D, and interface transfer coefficient, K. Relation between the activation energies of D and K will be analyzed and compared with available experimental data.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 226 ◽  
Author(s):  
Stefania Doppiu ◽  
Jean-Luc Dauvergne ◽  
Elena Palomo del Barrio

In this paper, the use of solid-state reactions for the storing of thermal energy at high temperature is proposed. The candidate reactions are eutectoid- and peritectoid-type transitions where all the components (reactants and reaction products) are in the solid state. To the best of our knowledge, these classes of reactions have not been considered so far for application in thermal energy storage. This study includes the theoretical investigation, based on the Calphad method, of binary metals and salts systems that allowed to determine the thermodynamic properties of interest such as the enthalpy, the free energy, the temperature of transition, the volume expansion and the heat capacity, giving guidelines for the selection of the most promising materials in view of their use for thermal energy storage applications. The theoretical investigation carried out allowed the selection of several promising candidates, in a wide range of temperatures (300–800 °C). Moreover, the preliminary experimental study and results of the binary Mn-Ni metallic system are reported. This system showed a complex reacting behavior with several discrepancies between the theoretical phase diagram and the experimental results regarding the type of reaction, the transition temperatures and enthalpies and the final products. The discrepancies observed could be due both to the synthesis method applied and to the high sensitivity of the material leading to partial or total oxidation upon heating even if in presence of small amount of oxygen (at the ppm level).


Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


Author(s):  
S.R. Summerfelt ◽  
C.B. Carter

The wustite-spinel interface can be viewed as a model interface because the wustite and spinel can share a common f.c.c. oxygen sublattice such that only the cations distribution changes on crossing the interface. In this study, the interface has been formed by a solid state reaction involving either external or internal oxidation. In systems with very small lattice misfit, very large particles (>lμm) with coherent interfaces have been observed. Previously, the wustite-spinel interface had been observed to facet on {111} planes for MgFe2C4 and along {100} planes for MgAl2C4 and MgCr2O4, the spinel then grows preferentially in the <001> direction. Reasons for these experimental observations have been discussed by Henriksen and Kingery by considering the strain energy. The point-defect chemistry of such solid state reactions has been examined by Schmalzried. Although MgO has been the principal matrix material examined, others such as NiO have also been studied.


Author(s):  
W. A. Chiou ◽  
N. L. Jeon ◽  
Genbao Xu ◽  
M. Meshii

For many years amorphous metallic alloys have been prepared by rapid quenching techniques such as vapor condensation or melt quenching. Recently, solid-state reactions have shown to be an alternative for synthesizing amorphous metallic alloys. While solid-state amorphization by ball milling and high energy particle irradiation have been investigated extensively, the growth of amorphous phase by cold-rolling has been limited. This paper presents a morphological and structural study of amorphization of Cu and Ti foils by rolling.Samples of high purity Cu (99.999%) and Ti (99.99%) foils with a thickness of 0.025 mm were used as starting materials. These thin foils were cut to 5 cm (w) × 10 cm (1), and the surface was cleaned with acetone. A total of twenty alternatively stacked Cu and Ti foils were then rolled. Composite layers following each rolling pass were cleaned with acetone, cut into half and stacked together, and then rolled again.


Author(s):  
P. G. Kotula ◽  
D. D. Erickson ◽  
C. B. Carter

High-resolution field-emission-gun scanning electron microscopy (FESEM) has recently emerged as an extremely powerful method for characterizing the micro- or nanostructure of materials. The development of high efficiency backscattered-electron detectors has increased the resolution attainable with backscattered-electrons to almost that attainable with secondary-electrons. This increased resolution allows backscattered-electron imaging to be utilized to study materials once possible only by TEM. In addition to providing quantitative information, such as critical dimensions, SEM is more statistically representative. That is, the amount of material that can be sampled with SEM for a given measurement is many orders of magnitude greater than that with TEM.In the present work, a Hitachi S-900 FESEM (operating at 5kV) equipped with a high-resolution backscattered electron detector, has been used to study the α-Fe2O3 enhanced or seeded solid-state phase transformations of sol-gel alumina and solid-state reactions in the NiO/α-Al2O3 system. In both cases, a thin-film cross-section approach has been developed to facilitate the investigation. Specifically, the FESEM allows transformed- or reaction-layer thicknesses along interfaces that are millimeters in length to be measured with a resolution of better than 10nm.


Sign in / Sign up

Export Citation Format

Share Document