The influence of hexamethylenetetramine on the structure and corrosion resistance of phosphate coating on AZ31 magnesium alloy

2016 ◽  
Vol 63 (3) ◽  
pp. 161-165 ◽  
Author(s):  
Jiansan Li ◽  
Yali Li ◽  
Yanqin Chen ◽  
Jiawei Sun ◽  
Chunxiao Wang ◽  
...  

Purpose This paper aims to report the influence of hexamethylenetetramine (HMTA) on phosphate coatings formed on AZ31 magnesium alloys. Design/methodology/approach These phosphate coatings were obtained by immersing magnesium alloys in phosphate baths with HMTA. The morphology and composition of the phosphate coatings were investigated via scanning electron microscopy, energy dispersive spectrometry and X-ray diffraction. Findings The phosphate coatings were mainly composed of CaHPO4·2H2O. The HMTA concentration in the phosphate bath influenced the crystallization and corrosion resistance of the phosphate coating. Originality/value The polarization curve shows that the anti-corrosion qualities of the phosphate coating were optimal when the HMTA concentration was 1.0 g/L in the phosphate bath. Electrochemical impedance spectroscopy (EIS) shows that the electrochemical impedances increased gradually when the HMTA concentration varied from 1.0 to 3.0 g/L.

2010 ◽  
Vol 95 ◽  
pp. 79-83
Author(s):  
Amir Eliezer

Micro-arc oxidization of AM50 magnesium alloys was studied. The influence of micro-arc oxidization process was investigated; phase structure were analyzed using X-ray diffraction (XRD). Open circuit potential (OCP) and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys under stress conditions. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl2O4 The corrosion resistance of ceramic coatings is improved compared with magnesium alloy substrate.


2009 ◽  
Vol 56 (6) ◽  
pp. 299-305 ◽  
Author(s):  
Xia Cao ◽  
Ning Wang ◽  
Ning Liu

PurposeThe purpose of this paper is to investigate the effect of chloride along with NO2 on the atmospheric corrosion of bronze using exposure tests.Design/methodology/approachSurface tension tests and electrochemical impedance measurements together with scanning electron microscopy (SEM) with energy dispersive atomic X‐ray, and X‐ray diffraction are used to characterize the corrosion behavior.FindingsThe results of the weight loss measurements show that the whole corrosion kinetics can be described approximately by: ΔW=atb; the synergistic effect of chloride and NO2 is observed clearly, though no nitrate existed in the corrosion products.Originality/valueA new catalyst theory has been suggested in this paper, i.e. that NO2 acts as a catalyst during the corrosion process when significant quantities of chloride also are present.


2018 ◽  
Vol 65 (4) ◽  
pp. 333-339 ◽  
Author(s):  
Chaolei Ban ◽  
Shuqin Zhu ◽  
Jie Ma ◽  
Fangreng Wang ◽  
Zhengfeng Jia ◽  
...  

Purpose Ni coating was electroplated on carbon steel substrate to protect carbon steel. Design/methodology/approach During electroplating, the ultrasonic irradiation (UI) (1 kHz) action was in situ used with different frequency. The influence of UI on the microstructure, mechanical and electrochemical performance of the coating was studied with scanning electron microscopy, X-ray diffraction, microhardness measurement, polarization curves and electrochemical impedance spectroscopy. Findings The results show that comparing that without UI imposition, UI during electroplating can refine the coating grain and decrease the micro-pores in the coating, resulting in improvement of the coating corrosion and hardness. Originality/value The imposition of UI action during electroplating Ni coating can remove intrinsic pores in the coating and compact the coating. The potential bimetallic cell between substrate and plating layer can be insulated to enhance the corrosion resistance of Ni coating. The imposition of UI action during electroplating Ni coating can refine Ni coating grain size and improve the coating haredness.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Juanping Xu ◽  
Jinxu Li ◽  
Zheng Wang ◽  
Hao Fu ◽  
Ming Wu

Purpose The purpose of this paper is to investigate the effect of the soft annealing time on the microstructure and hydrogen embrittlement (HE) of Fe-0.22C-11.54Mn-2.05Al steels. Design/methodology/approach Steels A and B with different morphologies were prepared by cold rolling after warm rolling, long/short softening annealing and finally annealing at 700 °C for 30 min. Uncharged and charged samples were subjected to tensile, and HE behavior was studied by electron backscattered diffraction, scanning electron microscopy and X-ray diffraction. Findings The two samples exhibited similar tensile strengths. The homogeneous equiaxed microstructure of steel B was found to be more conducive to relieve its HE sensitivity. Steel A exhibited bimodal-grained microstructures – blocky and lath. The formation of crack in the blocky grains of steel A resulted in a significant reduction in its plasticity and tensile strength. Originality/value The high HE susceptibility of steel A is mainly connected with the inhomogeneity of martensite transformation.


2019 ◽  
Vol 66 (1) ◽  
pp. 1-10
Author(s):  
Juan Du ◽  
Yuning He ◽  
Pingli Liu ◽  
Yigang Liu ◽  
Xianghai Meng ◽  
...  

PurposeThis paper aims to analyze the corrosion and corrosion inhibition of N80 in 10 per cent HCl + 8 per cent fluoroboric acid (HBF4) solution for acidizing operation.Design/methodology/approachThe corrosion rate, kinetic parameters (Ea, A) and thermodynamic parameters (ΔH, ΔS) of N80 steel in fresh acid and spent acid, 10 per cent HCl + 8 per cent HBF4, 10 per cent HCl and 8 per cent HBF4solutions were calculated through immersion tests. The corrosion and inhibition properties were studied through X-ray diffraction and electrochemical measurements. The corrosion morphology of the corrosion product was examined by scanning electron microscopy (SEM).FindingsThe results demonstrated that the spent acid was the main cause of acidification corrosion, and the HBF4would cause serious corrosion to N80 steel. The results showed that the N80 steel was more seriously corroded in the spent acid than in fresh acid, and the hydrolysis of HBF4accelerates the dissolution process of N80 steel anode to control the corrosion reaction. The results showed that the acidification will definitely cause serious corrosion to the oil tube; therefore, necessary anti-corrosion measures must be taken in the acidification process.Originality/valueThe results showed that acidizing the formation with 10 per cent HCl + 8 per cent HBF4will definitely cause serious corrosion to the oil tube, especially when the spent acid flows back. Therefore, necessary anti-corrosion measures must be taken in the acidification process, especially in the spent acid flowback stage.


2016 ◽  
Vol 63 (5) ◽  
pp. 355-359
Author(s):  
Naghmeh Amirshaqaqi ◽  
Mehdi Salami-Kalajahi ◽  
Mohammad Mahdavian

Purpose The conventional method for evaluation of corrosion resistance of aluminum flakes is based on the volume of evolved hydrogen in acidic and basic environments. This study aims to introduce electrochemical impedance spectroscopy (EIS) as a method to evaluate corrosion resistance of aluminum flakes. Design/methodology/approach Aluminum flakes with different surface modifications were compressed to build a disk. Then, the disks were examined by EIS in NaCl solution. Also, the corrosion resistance of the flakes was evaluated by the conventional method. Findings The results revealed applicability of EIS for evaluation of corrosion resistance of aluminum flakes. Originality/value Application of EIS to evaluate corrosion resistance of aluminum flakes is novel. As it can provide fast, reliable and quantitative estimation of the corrosion resistance of the aluminum flakes in the 3.5 per cent NaCl solution. This medium is highly encountered for the aluminum flakes used in organic coatings, that is why test in NaCl solution is more convenient compared to the conventional methods using acid and alkaline conditions.


2015 ◽  
Vol 63 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Mortaga Abou-Krisha ◽  
Fawzi Assaf ◽  
Omar Alduaij ◽  
Abdulrahman G Alshammari ◽  
Fatma El-Sheref

Purpose – The purpose of this study was to compare the electrodeposition behavior and corrosion resistance of ternary and binary alloys. Design/methodology/approach – Potentiodynamic polarization resistance measurement and anodic linear sweep voltammetry techniques were used for the corrosion study. The surface morphology and chemical composition of the deposits were examined using scanning electron microscopy and atomic absorption spectroscopy, respectively. The phase structure was characterized by X-ray diffraction analysis. Electrodeposition behavior was carried out using cyclic voltammetry and galvanostatic techniques. Findings – It was found that the obtained ternary alloy exhibited better corrosion resistance and a more-preferred surface appearance compared to the binary alloys that were electrodeposited under similar conditions. Research limitations/implications – The ternary alloy showed better anticorrosion properties compared to binary deposits that were electroplated successfully from the plating baths. The Zn-Co-Fe alloy could be used advantageously in industry because the ternary alloy exhibits the collective properties of the binary alloys in one alloy via the electrodeposition of Zn-Ni-Co alloy. Social implications – Increasing the corrosion resistance implies to social economic increases. Originality/value – To date, the electrodeposition of Zn-Co-Fe alloy was studied in only a small number of articles. It was found that the presence of Co or Fe could provide a useful coating on the steel that would reduce its susceptibility to corrosion attack.


2017 ◽  
Vol 64 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Morteza Hoseinieh ◽  
Taghi Shahrabi ◽  
Morteza Farrokhi Rad ◽  
Bahram Ramezanzadeh

Purpose The aim of this paper is to investigate the influence of sour crude oil contaminant on the calcareous scale deposition under cathodic protection of carbon steel in artificial seawater. Design/methodology/approach Electrochemical and surface characterizations are carried out using chronoamperometry, electrochemical impedance spectroscopy, scanning electron microscope/energy dispersive spectroscopy, X-Ray diffraction and Raman spectroscopy techniques. Findings Results showed that sour oil limited the deposit nucleation regarding its volume concentrations. The inhibition mechanism was examined to be simultaneous acts of pH reduction and mackinawite formation beside minor physical adsorption of oil molecules on steel electrode. Originality/value There is no paper concerning the proposed subject, and the idea of this work is fully novel which is of great significance because of the consequences of disastrous oil spill phenomena on the integrity of exposed offshore facilities in terms of optimum protection against probable corrosion mechanisms.


2019 ◽  
Vol 66 (4) ◽  
pp. 471-478 ◽  
Author(s):  
Majid Hosseinzadeh ◽  
Abdol Hamid Jafari ◽  
Rouhollah Mousavi ◽  
Mojtaba Esmailzadeh

Purpose In this study, electrochemical deposition method which have cheaper equipment than thermal spraying methods and is available for the production of composite coatings were used. Design/methodology/approach Composite coatings were electrodeposited from a Watts's bath solution in which the suspended Cr3C2-NiCr particles were dispersed in the bath solution during deposition. Potentiodynamic polarization and electrochemical impedance spectroscopy techniques have been used to evaluate the corrosion resistance of the composite coating in the 3.5 Wt.% NaCl solution. Findings It was found that the submicron Cr3C2-NiCr particles distributed uniformly in the coating and depend on the current density of deposition, different amount of particles can be incorporated in the coating. The results showed that the corrosion resistance of the Ni/ Cr3C2-NiCr composite coatings is more comparable to the pure nickel coating. Originality/value Production of Ni-base composite coating from an electrolytic bath containing Cr3C2-NiCr particles is possible via electrodeposition.


Sign in / Sign up

Export Citation Format

Share Document