Finite element implementation of viscoelastic and viscoplastic models

2020 ◽  
Vol 37 (8) ◽  
pp. 2561-2585
Author(s):  
Hossein Sepiani ◽  
Maria Anna Polak ◽  
Alexander Penlidis

Purpose The purpose of this study is to present a finite element (FE) implementation of phenomenological three-dimensional viscoelastic and viscoplastic constitutive models for long term behaviour prediction of polymers. Design/methodology/approach The method is based on the small strain assumption but is extended to large deformation for materials in which the stress-strain relation is nonlinear and the concept of incompressibility is governing. An empirical approach is used for determining material parameters in the constitutive equations, based on measured material properties. The modelling process uses a spring and dash-pot and a power-law approximation function method for viscoelastic and viscoplastic nonlinear behaviour, respectively. The model improvement for long term behaviour prediction is done by modifying the material parameters in such a way that they account for the current test time. The determination of material properties is based on the non-separable type of relations for nonlinear materials in which the material properties change with stress coupled with time. Findings The proposed viscoelastic and viscoplastic models are implemented in a user material algorithm of the FE general-purpose program ABAQUS and the validity of the models is assessed by comparisons with experimental observations from tests on high-density polyethylene samples in one-dimensional tensile loading. Comparisons show that the proposed constitutive model can satisfactorily represent the time-dependent mechanical behaviour of polymers even for long term predictions. Originality/value The study provides a new approach in long term investigation of material behaviour using FE analysis.

2014 ◽  
Vol 10 (4) ◽  
pp. 631-658 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S. Ramaswami ◽  
Fadi Abu-Farha

Purpose – The purpose of this paper is to propose a computational approach in order to help establish the effect of various self-piercing rivet (SPR) process and material parameters on the quality and the mechanical performance of the resulting SPR joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the SPR process; (b) determination of the mechanical properties of the resulting SPR joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the SPR joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified SPR connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all SPR joints is associated with a prohibitive computational cost. Findings – It is found that the approach developed in the present work can be used, within an engineering optimization procedure, to adjust the SPR process and material parameters (design variables) in order to obtain a desired combination of the SPR-joint mechanical properties (objective function). Originality/value – To the authors’ knowledge, the present work is the first public-domain report of the comprehensive modeling and simulations including: self-piercing process; virtual mechanical testing of the SPR joints; and derivation of the constitutive relations for the SPR connector elements.


2016 ◽  
Vol 7 (3) ◽  
pp. 370-396 ◽  
Author(s):  
Mica Grujicic ◽  
Jennifer Snipes ◽  
S Ramaswami

Purpose – The purpose of this paper is to propose a computational approach to establish the effect of various flow drilling screw (FS) process and material parameters on the quality and the mechanical performance of the resulting FS joints. Design/methodology/approach – Toward that end, a sequence of three distinct computational analyses is developed. These analyses include: (a) finite-element modeling and simulations of the FS process; (b) determination of the mechanical properties of the resulting FS joints through the use of three-dimensional, continuum finite-element-based numerical simulations of various mechanical tests performed on the FS joints; and (c) determination, parameterization and validation of the constitutive relations for the simplified FS connectors, using the results obtained in (b) and the available experimental results. The availability of such connectors is mandatory in large-scale computational analyses of whole-vehicle crash or even in simulations of vehicle component manufacturing, e.g. car-body electro-coat paint-baking process. In such simulations, explicit three-dimensional representation of all FS joints is associated with a prohibitive computational cost. Findings – Virtual testing of the shell components fastened using the joint connectors validated the ability of these line elements to realistically account for the strength, ductility and toughness of the three-dimensional FS joints. Originality/value – The approach developed in the present work can be used, within an engineering-optimization procedure, to adjust the FS process and material parameters (design variables) in order to obtain a desired combination of the FS-joint mechanical properties (objective function).


Author(s):  
Joonas Ponkala ◽  
Mohsin Rizwan ◽  
Panos S. Shiakolas

The current state of the art in coronary stent technology, tubular structures used to keep the lumen open, is mainly populated by metallic stents coated with certain drugs to increase biocompatibility, even though experimental biodegradable stents have appeared in the horizon. Biodegradable polymeric stent design necessitates accurate characterization of time dependent polymer material properties and mechanical behavior for analysis and optimization. This manuscript presents the process for evaluating material properties for biodegradable biocompatible polymeric composite poly(diol citrate) hydroxyapatite (POC-HA), approaches for identifying material models and three dimensional solid models for finite element analysis and fabrication of a stent. The developed material models were utilized in a nonlinear finite element analysis to evaluate the suitability of the POC-HA material for coronary stent application. In addition, the advantages of using femtosecond laser machining to fabricate the POC-HA stent are discussed showing a machined stent. The methodology presented with additional steps can be applied in the development of a biocompatible and biodegradable polymeric stents.


Author(s):  
Lu Zhang ◽  
Shaohua Wang ◽  
Bing Li

The radial tire belt is composed of multi-layered fiber-reinforced cords with a very complex structure. Restricted by the computing speed, the simplified finite element (FE) tire model with equivalent belt is usually applied in the vehicle dynamic simulation. However, it is always difficult to obtain the material parameters of the equivalent belt. In this paper, a calculation method of equivalent belt material parameters for the simplified FE tire model is proposed based on the three-dimensional (3-D) anisotropic elasticity of the cord reinforced composites. The simulation results of the static radial stiffness, modal characteristics, and dynamic responses for the simplified FE tire model with parameters obtained by the calculation method were compared with experiment results. The results show that the deviation between the experiment and simulation is acceptable, and the validity of the calculation method is verified.


Author(s):  
Alessandro Scolaro ◽  
Ivor Clifford ◽  
Carlo Fiorina ◽  
Andreas Pautz

A new 3D fuel behavior solver is currently under collaborative development at the Laboratory for Reactor Physics and Systems Behaviour of the École Polytechnique Fédérale de Lausanne and at the Paul Scherrer Institut. The long term objective is to enable a more accurate simulation of inherently 3D safety-relevant phenomena which affect the performance of the nuclear fuel. The current implementation is a coupled three-dimensional heat conduction and linear elastic small strain solver, which models the effects of burnup- and temperature dependent material properties, swelling, relocation and gap conductance. The near future developments will include the introduction of a smeared pellet cracking model and of material inleasticities, such as creep and plasticity. After an overview of the theoretical background, equations and models behind the solver, this work focuses on the recent preliminary verification and validation efforts. The radial temperature and stress profiles predicted by the solver for the case of an infinitely long rod are compared against their analytical solution, allowing the verification of the thermo-mechanics equations and of the gap heat transfer model. Then, an axisymmetric model is created for 4 rods belonging to the Halden assembly IFA-432. These models are used to predict the fuel centerline temperature during power ramps recorded at the beginning of life, when the fuel rod performance is still not affected by more complex high burnup effects. Finally, the predictions are compared with the experimental measurements coming from the IFPE database. This first preliminary results allow a careful validation of the temperature-dependent material properties and of the gap conductance models.


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Yulong Ge ◽  
Xiaoxing Li ◽  
Lihui Lang

Tubular material parameters are required for both part manufactory process planning and finite element simulations. The bulging test is one of the most credible ways to detect the property parameters for tubular material. The inverse approach provides more effective access to the accurate material evaluation than with direct identifications. In this paper, a newly designed set of bulging test tools is introduced. An inverse procedure is adopted to determine the tubular material properties in Krupkowski-Swift constitutive model of material deformation using a hybrid algorithm that combines the differential evolution and Levenberg-Marquardt algorithms. The constitutive model’s parameters obtained from the conventional and inverse methods are compared, and this comparison shows that the inverse approach is able to offer more information with higher reliability and can simplify the test equipment.


Author(s):  
C.H.H.M. Custers ◽  
J.W. Jansen ◽  
M.C. van Beurden ◽  
E.A. Lomonova

PurposeThe purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.Design/methodology/approachIn conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.FindingsThe method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.Research limitations/implicationsBecause of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.Practical implicationsBecause of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.Originality/valueWith the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Arman Ahmadi ◽  
Farshid Sadeghi

Abstract In this investigation, a finite element (FE) model was developed to study the third body effects on the fretting wear of Hertzian contacts in the partial slip regime. An FE three-dimensional Hertzian point contact model operating in the presence of spherical third bodies was developed. Both first bodies and third bodies were modeled as elastic–plastic materials. The effect of the third body particles on contact stresses and stick-slip behavior was investigated. The influence of the number of third body particles and material properties including modulus of elasticity, hardening modulus, and yield strength were analyzed. Fretting loops in the presence and absence of wear particles were compared, and the relation between the number of cycles and the hardening process was evaluated. The results indicated that by increasing the number of particles in contact, more load was carried by the wear particles which affect the wear-rate of the material. In addition, due to the high plastic deformation of the debris, the wear particles deformed and took a platelet shape. Local stick-slip behavior over the third body particles was also observed. The results of having wear debris with different material properties than the first bodies indicated that harder wear particles have a higher contact pressure and lower slip at the location of particles which affects the wear-rate.


2017 ◽  
Vol 89 (2) ◽  
pp. 274-279
Author(s):  
Thomas Wright ◽  
Imran Hyder ◽  
Mitchell Daniels ◽  
David Kim ◽  
John P. Parmigiani

Purpose The purpose of this paper is to determine which of the ten material properties of the Hashin progressive damage model significantly affect the maximum load-carrying ability of center-notched carbon fiber panels under in-plane tension and out-of-plane bending. Design/methodology/approach The approach used is to calculate the maximum load using a finite element model for a range of material property values as specified by a fraction factorial design. The finite element model used has been experimentally validated in prior work. Findings Results showed that for the laminates considered, at most three and as few as one of the ten Hashin material properties significantly affected the magnitude of the maximum load. Practical implications While the results of this paper only specifically apply to the laminates included in the study, the results suggest that, in general, only a small number of the Hashin material properties affect laminate load-carrying ability. Originality/value Knowing which properties are significant is of value in selecting materials to optimize performance and also in determining which properties need to be known to a high accuracy.


Sign in / Sign up

Export Citation Format

Share Document